42 resultados para Anuran assemblages
Resumo:
The bryozoan fauna growing on deep-water corals (Lophelia, Madrepora) from the upper-slope of Catalonia (Blanes and Banyuls-sur-mer: NW Mediterranean Sea) was studied. Among the 36 species recorded, a new species, Escharella acuta sp. nov., and a new subspecies, Escharina dutertrei protecta ssp. nov., are described; five other species have been rarely reported or were unknown from the Mediterranean Sea (Copidozoum exiguum, Amphiblestrum flemingii, Schizomavella neptuni, Smittina crystallina, Phylactellipora eximia) . This epibiotic bryozoan fauna differs clearly from shallow-water assemblages and comprises a greater proportion of boreo-atlantic species.
Resumo:
High mountain rangelands host important populations of threatened bird species, but can be affected by extensive changes in land use. I studied the breeding bird community of two shrubland plots at 1,850–2,100 m a.s.l. in the Pyrenees. Breeding territories were mapped for four years, before and after the prescribed burning, the aim of which was to increase the grazing value of the study area. The most abundant species (reaching ≥3 breeding pairs/10 ha in at least one plot and one year) were Dunnock Prunella modularis, Dartford Warbler Sylvia undata, Stonechat Saxicola torquatus, Rock Bunting Emberiza cia and Ortolan Bunting E. hortulana. The open-shrubland plot contained a similar number of breeding species (10 vs.9), but a lower overall density (23 vs. 28 breeding pairs/10 ha) than the dense-shrubland plot. Most breeding species alsooccurred in winter. After fire, the number of bird species, overall density and conservation value (an index that takes into account all species’ densities and their categories of conservation concern in Europe) decreased, but tended to recover afterwards. These results may help understand the composition and dynamics of bird assemblages in managed mountain areas
Resumo:
Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that determine the presence of different biotic assemblages. This novel concept links hydrological and ecological conditions in a unique way. All these methods were implemented with data from eight temporary streams around the Mediterranean within the MIRAGE project. Their application was a precondition to assessing the ecological quality of these streams.
Resumo:
Artificial reefs have barely been used in Neotropical reservoirs (about five studies in three reservoirs), despite their potential as a fishery management tool to create new habitats and also to understand fish ecology. We experimentally assessed how reef material (ceramic, concrete, and PVC) and time modulated fish colonization of artificial reefs deployed in Itaipu Reservoir, a large reservoir of the mainstem Parana´ River, Brazil. Fish richness, abundance, and biomass were significantly greater in the reef treatments than at control sites. Among the experimental reefs, ceramic followed by the concrete treatments were the materials most effectively colonized, harboring the majority of the 13 fish species recorded. Although dependent on material type, many of the regularities of ecological successions were also observed in the artificial reefs, including decelerating increases in species richness, abundance, mean individual size, and species loss rates with time and decelerating decreases of species gain and turnover rates. Species composition also varied with material type and time, together with suites of life history traits: more equilibrium species (i.e., fishes of intermediate size that often exhibit parental care and produce fewer but larger offspring) of the Winemiller-Rose model of fish life histories prevailed in later successional stages. Overall, our study suggests that experimental reefs are a promising tool to understand ecological succession of fish assemblages, particularly in tropical ecosystems given their high species richness and low seasonality
Resumo:
Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives’ decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions
Resumo:
The Chironomidae is a cosmopolitan family of Nematoceran flies with more than 20 000 species described. However the diversity of genera and species of the family in the Andean region beyond the 2 000m.a.s.l are scarcely known. We conducted faunal surveys and biomonitoring research in different streams of Colombia, Ecuador and Peru from May 2005 to October 2011. Based on specimens collections, and a taxonomic key was developed to identify pupae and pupal exuviae of 46 genera of midges (Diptera, Chironomidae) collected from streams at high altitude areas on the Andean tropical mountains. We included illustrations and brief taxonomic descriptions for all genera, of which several ones have not yet been formally described; in this latter case we used the nomenclature of Roback & Coffman (1983). For two genera, Cricotopus and Genus 1, keys to the most common morphospecies were provided. Results showed that in this area the chironomid assemblages are dominated by the members of the subfamily Orthocladiinae (22 genera) followed by the Chironominae (13). Six genera of Tanypodinae were identified, while only three and two genera were present from subfamilies Podonominae and Diamesinae. This key may be very useful for both studies about drift in streams, and for biomonitoring purposes.
Resumo:
We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6–4-fold following a before–after control–impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2–77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9–48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure
Resumo:
The Grande Coupure represents a major terrestrial faunal turnover recorded in Eurasia associated with the overall climate shift at the Eocene-Oligocene transition. During this event, a large number of European Eocene endemic mammals became extinct and new Asian immigrants appeared. The absolute age of the Grande Coupure, however, has remained controversial for decades. The Late Eocene-Oligocene continental record of the Eastern Ebro Basin (NE Spain) constitutes a unique opportunity to build a robust magnetostratigraphy- based chronostratigraphy which can contribute with independent age constraints for this important turnover. This study presents new magnetostratigraphic data of a 495-m-thick section (Moià-Santpedor) that ranges from 36.1 Ma to 33.3 Ma. The integration of the new results with previous litho- bio- and magnetostratigraphic records of the Ebro Basin yields accurate ages for the immediately pre- and post-Grand Coupure mammal fossil assemblages found in the study area, bracketing the Grande Coupure to an age embracing the Eocene-Oligocene transition, with a maximum allowable lag of 0.5 Myr with respect to this boundary. The shift to drier conditions that accompanied the global cooling at the Eocene-Oligocene transition probably determined the sedimentary trends in the Eastern Ebro Basin. The occurrence and expansion of an amalgamated-channel sandstone unit is interpreted as the forced response of the fluvial fan system to the transient retraction of the central-basin lake systems. The new results from the Ebro Basin allow us to revisit correlations for the controversial Eocene-Oligocene record of the Hampshire Basin (Isle of Wight, UK), and their implications for the calibration of the Mammal Palaeogene reference levels MP18 to MP21.
Homogenization Dynamics and Introduction Routes of Invasive Freshwater Fish in the Iberian Peninsula
Resumo:
Nonnative invasive species are one of the main global threats to biodiversity. The understanding of the traits characterizing successful invaders and invasion-prone ecosystems is increasing, but our predictive ability is still limited. Quantitative information on biotic homogenization and particularly its temporal dynamics is even scarcer. We used freshwater fish distribution data in the Iberian Peninsula in four periods (before human intervention, 1991, 1995, and 2001) to assess the temporal dynamics of biotic homogenization among river basins. The percentage of introduced species among fish faunas has increased in recent times (from 41.8% in 1991 to 52.5% in 2001), leading to a clear increase in the similarity of community composition among basins. The mean Jaccard's index increase (a measure of biotic homogenization) from the pristine situation to the present (17.1%) was similar to that for Californian fish but higher than for other studies. However, biotic homogenization was found to be a temporally dynamic process, with finer temporal grain analyses detecting transient stages of biotic differentiation. Introduced species assemblages were spatially structured along a latitudinal gradient in the Iberian Peninsula, with species related to sport fishing being characteristic of northern basins. Although the comparison of fish distributions in the Iberian Peninsula and France showed significant and generalized biotic homogenization, nonnative assemblages of northeastern Iberian basins were more similar to those of France than to those of the rest of the Iberian Peninsula, indicating a main introduction route. Species introduced to the Iberian Peninsula tended to be mainly piscivores or widely introduced species that previously had been introduced to France. Our results indicate that the simultaneous analysis of the spatial distribution of introduced assemblages (excluding native species that reflect other biogeographical patterns) and their specific traits can be an effective tool to detect introduction and invasion routes and to predict future invaders from donor regions
Resumo:
We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6–4-fold following a before–after control–impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2–77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9–48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure
Resumo:
This study is focused on the dominance exerted by the invasive Argentine ant over native ants in a coastal Mediterranean area. Theimpact of this invasive ant on native ant assemblages and its consequences on total ant biomass and on the intensity of habitat explorationwere evaluated. Foraging ants were observed and their trajectories recorded during 5-minute periods in two study zones, one invaded andthe other non-invaded. Ant species detected, ant worker abundance, ant biomass and the intensity of soil surface searching done by antswere compared between the two zones. The Argentine ant invasion provoked a drastic reduction of the ant species richness. Apparentlyonly one native ant species is able to coexist with the Argentine ant, the cryptic Plagiolepis pygmaea. Ant worker abundance was also modified after the invasion: the number of Argentine ant workers detected, which represented 92% of the invaded zone, was two times higher than the number of native ant workers detected in the non-invaded zone. The total ant biomass was inversely affected, becoming four times lower in the invaded zone highly dominated by Linepithema humile. The higher number of Argentine ant workers and their fast tempo of activity implied an alteration of the intensity of soil surface searching: scanning by the Argentine ants in the invaded zone was higher than that done by the native ants in the non-invaded zone, and the estimated time for a complete soil surface scan was 64 minutes in the invaded zone and 108 minutes in the non-invaded zone. Consequently, resources will be discovered faster by ants in the invaded zone than in the non-invaded zone. The increase of the mean temperature and the decrease of the relative humidity from May to August reduced the ant activity in the two study zones but this reduction was greater in the invaded zone
Resumo:
Chironomidae spatial distribution was investigated at 63 near-pristine sites in 22 catchments of the Iberian Mediterranean coast. We used partial redundancy analysis to study Chironomidae community responses to a number of environmental factors acting at several spatial scales. The percentage of variation explained by local factors (23.3%) was higher than that explained by geographical (8.5%) or regional factors(8%). Catchment area, longitude, pH, % siliceous rocks in the catchment, and altitude were the best predictors of Chironomidae assemblages. We used a k-means cluster analysis to classified sites into 3 major groups based on Chironomidae assemblages. These groups were explained mainly by longitudinal zonation and geographical position, and were defined as 1) siliceous headwater streams, 2) mid-altitude streams with small catchment areas, and 3) medium-sized calcareous streams. Distinct species assemblages with associated indicator taxa were established for each stream category using IndVal analysis. Species responses to previously identified key environmental variables were determined, and optima and tolerances were established by weighted average regression. Distinct ecological requirements were observed among genera and among species of the same genus. Some genera were restricted to headwater systems (e.g., Diamesa), whereas others (e.g., Eukiefferiella) had wider ecological preferences but with distinct distributions among congenerics. In the present period of climate change, optima and tolerances of species might be a useful tool to predict responses of different species to changes in significant environmental variables, such as temperature and hydrology.