106 resultados para Amorphous Cellulose


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed in situ spectroellipsometric analysis of the nucleation and growth of hydrogenated amorphous silicon (a:Si:H) is presented. Photoelectronic quality a‐Si:H films are deposited by plasma‐enhanced chemical vapor deposition on smooth metal (NiCr alloy) and crystalline silicon (c‐Si) substrates. The deposition of a‐Si:H is analyzed from the first monolayer up to a final thickness of 1.2 μm. In order to perform an improved analysis, real time ellipsometric trajectories are recorded, using fixed preparation conditions, at various photon energies ranging from 2.2 to 3.6 eV. The advantage of using such a spectroscopic experimental procedure is underlined. New insights into the nucleation and growth mechanisms of a‐Si:H are obtained. The nucleation mechanism on metal and c‐Si substrates is very accurately described assuming a columnar microstructural development during the early stage of the growth. Then, as a consequence of the incomplete coalescence of the initial nuclei, a surface roughness at the 10-15 Å scale is identified during the further growth of a‐Si:H on both substrates. The bulk a‐Si:H grows homogeneously beneath the surface roughness. Finally, an increase of the surface roughness is evidenced during the long term growth of a‐Si:H. However, the nature of the substrate influenced the film growth. In particular, the film thickness involved in the nucleation‐coalescence phase is found lower in the case of c‐Si (67±8 Å) as compared to NiCr (118±22 Å). Likewise films deposited on c‐Si present a smaller surface roughness even if thick samples are considered (>1 μm). More generally, the present study illustrates the capability of in situ spectroellipsometry to precisely analyze fundamental processes in thin‐film growth, but also to monitor the preparation of complex structures on a few monolayers scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon (a‐Si:H) thin films have been obtained from pure SiH4 rf discharges by using the square wave modulation (SQWM) method. Film properties have been studied by means of spectroellipsometry, thermal desorption spectrometry, photothermal deflection spectroscopy and electrical conductivity measurements, as a function of the modulation frequency of the rf power amplitude (0.2-4000 Hz). The films deposited at frequencies about 1 kHz show the best structural and optoelectronic characteristics. Based upon the experimental results, a qualitative model is presented, which points up the importance of plasma negative ions in the deposition of a‐Si:H from SQWM rf discharges through their influence on powder particle formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural relaxation of pure amorphous silicon a-Si and hydrogenated amorphous silicon a-Si:H materials, that occurs during thermal annealing experiments, has been analyzed by Raman spectroscopy and differential scanning calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by relaxation of the Si-Si network strain but it reveals a derelaxation of the bond angle strain. Since the state of relaxation after annealing is very similar for pure and hydrogenated materials, our results give strong experimental support to the predicted configurational gap between a-Si and crystalline silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study the electronic surface passivation of crystalline silicon with intrinsic thin silicon films deposited by Catalytic CVD. The contactless method used to determine the effective surface recombination velocity was the quasi-steady-state photoconductance technique. Hydrogenated amorphous and nanocrystalline silicon films were evaluated as passivating layers on n- and p-type float zone silicon wafers. The best results were obtained with amorphous silicon films, which allowed effective surface recombination velocities as low as 60 and 130 cms -1 on p- and n-type silicon, respectively. To our knowledge, these are the best results ever reported with intrinsic amorphous silicon films deposited by Catalytic CVD. The passivating properties of nanocrystalline silicon films strongly depended on the deposition conditions, especially on the filament temperature. Samples grown at lower filament temperatures (1600 °C) allowed effective surface recombination velocities of 450 and 600 cms -1 on n- and p-type silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous silicon n-i-p solar cells have been fabricated entirely by Hot-Wire Chemical Vapour Deposition (HW-CVD) at low process temperature < 150 °C. A textured-Ag/ZnO back reflector deposited on Corning 1737F by rf magnetron sputtering was used as the substrate. Doped layers with very good conductivity and a very less defective intrinsic a-Si:H layer were used for the cell fabrication. A double n-layer (μc-Si:H/a-Si:H) and μc-Si:H p-layer were used for the cell. In this paper, we report the characterization of these layers and the integration of these layers in a solar cell fabricated at low temperature. An initial efficiency of 4.62% has been achieved for the n-i-p cell deposited at temperatures below 150 °C over glass/Ag/ZnO textured back reflector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this work is the comparison of domain structure and off-diagonal magnetoimpedance effect in amorphous ribbons with different magnetostriction coefficient. The Co66Fe4Ni1Si15B14 and Fe80B20 samples were obtained by melt-spinning. During the quenching procedure a 0.07 T transverse magnetic field was applied to some of the samples. Domain patterns obtained by the Bitter technique confirm that the differences on the samples are related to the different anisotropy and magnetostriction coefficient, and the quenching procedure. Small changes on the anisotropy distribution and the magnetostriction coefficient can be detected by the off-diagonal impedance spectra as a consequence of the different permeability values of the samples

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thorough critical analysis of the theoretical relationships between the bond-angle dispersion in a-Si, Δθ, and the width of the transverse optical Raman peak, Γ, is presented. It is shown that the discrepancies between them are drastically reduced when unified definitions for Δθ and Γ are used. This reduced dispersion in the predicted values of Δθ together with the broad agreement with the scarce direct determinations of Δθ is then used to analyze the strain energy in partially relaxed pure a-Si. It is concluded that defect annihilation does not contribute appreciably to the reduction of the a-Si energy during structural relaxation. In contrast, it can account for half of the crystallization energy, which can be as low as 7 kJ/mol in defect-free a-Si

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural relaxation of pure amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) materials, that occurs during thermal annealing experiments, has been analyzed by Raman spectroscopy and differential scanning calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by relaxation of the Si-Si network strain but it reveals a derelaxation of the bond angle strain. Since the state of relaxation after annealing is very similar for pure and hydrogenated materials, our results give strong experimental support to the predicted configurational gap between a-Si and crystalline silicon

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant cell wall is a strong fibrillar network that gives each cell its stable shape. It is constituted by a network of cellulose microfibrils embedded in a matrix of polysaccharides, such as xyloglucans. To enlarge, cells selectively loosen this network. Moreover, there is a pectin-rich intercellular material, the middle lamella, cementing together the walls of adjacent plant cells. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a group of enzymes involved in the reorganisation of the cellulose-xyloglucan framework by catalysing cleavage and re-ligation of the xyloglucan chains in the plant cell wall, and are considered cell wall loosening agents. In the laboratory, it has been isolated and characterised a XTH gene, ZmXTH1, from an elongation root cDNA library of maize. To address the cellular function of ZmXTH1, transgenic Arabidopsis thaliana plants over-expressing ZmXTH1 (under the control of the CaMV35S promoter) were generated. The aim of the work performed was therefore the characterisation of these transgenic plants at the ultrastructural level, by transmission electron microscopy (TEM).The detailed cellular phenotype of transgenic plants was investigated by comparing ultra-thin transverse sections of basal stem of 5-weeks old plants of wild type (Col 0) and 35S-ZmXTH1 Arabidopsis plants. Transgenic plants show modifications in the cell walls, particularly a thicker middle lamella layer with respect the wild type plants, supporting the idea that the overexpression of ZmXTH1 could imply a pronounced wall-loosening. In sum, the work carried out reinforces the idea that ZmXTH1 is involved in the cell wall loosening process in maize.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report we present the growth process of the cobalt oxide system using reactive electron beam deposition. In that technique, a target of metallic cobalt is evaporated and its atoms are in-flight oxidized in an oxygen rich reactive atmosphere before reaching the surface of the substrate. With a trial and error procedure the deposition parameters have been optimized to obtain the correct stoichiometry and crystalline phase. The evaporation conditions to achieve the correct cobalt oxide salt rock structure, when evaporating over amorphous silicon nitride, are: 525 K of substrate temperature, 2.5·10-4 mbar of oxygen partial pressure and 1 Å/s of evaporation rate. Once the parameters were optimized a set of ultra thin film ranging from samples of 1 nm of nominal thickness to 20nm thick and bulk samples were grown. With the aim to characterize the samples and study their microstructure and morphology, X-ray diffraction, transmission electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy and quasi-adiabatic nanocalorimetry techniques are utilised. The final results show a size dependent effect of the antiferromagnetic transition. Its Néel temperature becomes depressed as the size of the grains forming the layer decreases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Barcelona Euro-Mediterranean Conference (1995) was intended to be a launching pad" for creating a new, innovative relationship between the EU-Fifteen and a selected set of non-member Middle Eastern and North African countries. The Barcelona Process was to become the European Union´s first attempt, of several, to create postmodern inclusive policy spheres as a way to deal with the post-enlargement problems of ´ins´ and outs´ in its immediate periphery. Nevertheless, in spite of geographical proximity, common problems and stated interest in creating amorphous EU borders in different sectors, the Euro-Mediterranean Partnership is today all but abandoned. This paper will examine some of the factors behind the current degeneration of the EU´s post-bipolar foreign policy strategy in the Mediterranean, by exploring the dialectic between the Union´s desire to expand its geopolitical, economic and cultural boundaries and the need to secure its territorial area (from migration, proliferation, social instability etc.). In the final part of the paper some suggestions for how to revive the relationship across the Mare Nostrum will be forwarded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

De acuerdo con los objetivos generales del proyecto y plan de trabajo previsto, para esta anualidad, se obtuvieron fibras y microfibras de celulosa a partir de dos fuentes: celulosa vegetal de pino y eucalipto y celulosa bacterial. Las microfibrillas han sido utilizadas como material de refuerzo para la fabricación de materiales compuestos a partir de caucho natural, policaprolactona y polivinil alcohol. Las muestras se fabricaron mediante la técnica de "casting" en medio acuoso y temperatura ambiente. Las muestras fueron caracterizados en sus propiedades mecánicas, físicas y térmicas. Se observó que, en general, la adición de las microfibrillas de celulosa en las matrices poliméricas provoca una mejora sustancial en las propiedades mecánicas del material en comparación con el polímero sin reforzar. Los resultados pueden resumirse de la siguiente manera: 1.Fabricación de materiales compuestos a base de caucho natural y fibras de celulosa. Se obtuvieron fibras y nanofibras de celulosa que fueron modificadas químicamente y usadas como refuerzo en matriz de caucho. Los resultados mostraron mejora de propiedades mecánicas del material, principalmente en los materiales compuestos reforzados con nanofibras. 2. Obtención de whiskers de celulosa y su utilización como material de refuerzo en una matriz de policaprolactona. Se obtuvieron whiskers de celulosa a partir de pasta blanqueada. La adición en una matriz de policaprolactona produjo materiales compuestos con propiedades mecánicas superiores a la matriz, con buena dispersión de los whiskers. 3. Obtención de fibras de celulosa bacterial y nanofibras de celulosa, aislamiento y utilización sobre una matriz de polivinil alcohol. Se obtuvo celulosa bacterial a partir de la bacteria Gluconacetobacter xylinum. Además se fabricaron nanofibras de celulosa a partir eucalipto blanqueado. La celulosa bacterial como material de refuerzo no produjo importantes mejoras en las propiedades mecánicas de la matriz; en cambio se observaron mejoras destacables con la nanofibra como refuerzo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El SPION (Super Paramagnetic Iron Oxide Nanoparticles) ha estat estudiat com un nou adsorbent per eliminar l’arsènic d’aigües contaminades. Les condicions òptimes de treball es van assolir per un pH de 3,6 i per concentracions inferiors als 100ppm. No es van trobar interferències significatives produïdes pels cations Cu, Ni i Zn en l’adsorció de l’As, sent el fosfat l’anió que més interfereix. Una esponja de cel·lulosa s’ha utilitzat com a suport del SPION, per disminuir les agregacions de les nanopartícules en suspensió i per proporcionar una material adequat per l’adsorció en continu, experiment amb columnes. Així, es va obtenir un augment de la capacitat d’adsorció del SPION per l’As(V), mentre que per l’As(III) continua sent baixa, per tant s’augmenta la selectivitat per l’As(V). Les interferències aniòniques afecten d’igual manera a l’adsorció de l’As(III) i l’As(V) quan l’adsorció és en continu o en discontinu. Els cations metàl·lics no interfereixen en l’adsorció de l’arsènic, a excepció del coure que és adsorbit i porta a la disminució de l’adsorció d’arsènic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this study was to explore the suitability of Vitis vinifera as a raw material and alkaline lignin as a natural binder for fiberboard manufacturing. In the first step, Vitis vinifera was steam- exploded through a thermo-mechanical vapor process in a batch reactor, and the obtained pulp was dried, ground, and pressed to produce the boards. The effects of pretreatment factors and pressing conditions on the chemical composition of the fibers and the physico-mechanical properties of binderless fiberboards were evaluated, and the conditions that optimize these properties were found. A response surface method based on a central composite design and multiple-response optimization was used. The variables studied and their respective variation ranges were: pretreatment temperature (Tr: 190-210ºC), pretreatment time (tr: 5-10 min), pressing temperature (Tp: 190-210ºC), pressing pressure (Pp: 8-16MPa), and pressing time (tp: 3-7min). The results of the optimization step show that binderless fiberboards have good water resistance and weaker mechanical properties. In the second step, fiberboards based on alkaline lignin and Vitis vinifera pulp produced at the optimal conditions determined for binderless fiberboards were prepared and their physico-mechanical properties were tested. Our results show that the addition of about 15% alkaline lignin leads to the production of fiberboards that fully meet the requirements of the relevant standard specifications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co-Ti-Sn-Ge substituted M-type bariumhexaferrite powders with mean grain sizes between about 10 nm and about 1 ¿m and a narrow size distribution were prepared reproducibly by means of a modified glass crystallization method. At annealing temperatures between 560 and 580°C of the amorphous flakes nanocrystalline particles grow. They behave superparamagnetically at room temperature and change into stable magnetic single domains at lower temperatures. The magnetic volume of the powders is considerably less than the geometric one. However, the effective anisotropy fields are larger by a Factor of two to three.