37 resultados para Alternative Formulations
Resumo:
Background: The use of complementary and alternative medicine (CAM) and complementary and alternative therapies (CAT) during pregnancy is increasing. Scientific evidence for CAM and CAT in the field of obstetrics mainly covers pain relief in labor. Midwives are responsible for labor and delivery care: hence, their knowledge of CAM and CAT is important. The aims of this study are to describe the professional profile of midwives who provide care for natural childbirth in Catalan hospitals accredited as centers for normal birth, to assess midwives" level of training in CAT and their use of these therapies, and to identify specific resources for CAT in labor wards. Methods: A descriptive, cross-sectional, quantitative method was used to assess the level of training and use of CAT by midwives working at 28 hospitals in Catalonia, Spain, accredited as public normal birth centers. Results: Just under a third of midwives (30.4%) trained in CAT after completion of basic training. They trained in an average of 5.97 therapies (SD 3.56). The number of CAT in which the midwives were trained correlated negatively with age (r = - 0.284; p < 0.001) and with their time working at the hospital in years (r = - 0.136; p = 0.036). Midwives trained in CAT considered that the following therapies were useful or very useful for pain relief during labor and delivery: relaxation techniques (64.3%), hydrotherapy (84.8%) and the application of compresses to the perineum (75.9%). The availability of resources for providing CAT during normal birth care varied widely from center to center. Conclusions: Age may influence attitudes towards training. It is important to increase the number of midwives trained in CAM for pain relief during childbirth, in order to promote the use of CAT and ensure efficiency and safety. CAT resources at accredited hospitals providing normal childbirth care should also be standardized.
Resumo:
In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the currently widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or move in a fixed direction, e.g., rightward or upward. While both formulations are essentially equivalent, the present approach leads us to consider discrete Fourier transforms, which eventually results in obtaining explicit expressions for the wave functions in terms of finite sums and allows the use of efficient algorithms based on the fast Fourier transform. The wave functions here obtained govern the probability of finding the particle at any given location but determine as well the exit-time probability of the walker from a fixed interval, which is also analyzed.
Resumo:
Abstract Personalized medicine is a challenging research area in paediatric treatments. Elaborating new paediatric formulations when no commercial forms are available is a common practice in pharmacy laboratories; among these, oral liquid formulations are the most common. But due to the lack of specialized equipment, frequently studies to assure the efficiency and safety of the final medicine cannot be carried out. Thus the purpose of this work was the development, characterization and stability evaluation of two oral formulations of sildenafil for the treatment of neonatal persistent pulmonary hypertension. After the establishment of a standard operating procedure (SOP) and elaboration, the physicochemical stability parameters appearance, pH, particle size, rheological behaviour and drug content of formulations were evaluated at three different temperatures for 90 days. Equally, prediction of long term stability, as well as, microbiological stability was performed. Formulations resulted in a suspension and a solution slightly coloured exhibiting fruity odour. Formulation I (suspension) exhibited the best physicochemical properties including Newtonian behaviour and uniformity of API content above 90% to assure an exact dosification process.
Resumo:
This paper describes high-quality journals in Brazil and Spain, with an emphasis on the distribution models used. It presents the general characteristics (age, type of publisher, and theme) and analyzes the distribution model by studying the type of format (print or digital), the type of access (open access or subscription), and the technology platform used. The 549 journals analyzed (249 in Brazil and 300 in Spain) are included in the 2011 Web of Science (WoS) and Scopus databases. Data on each journal were collected directly from their websites between March and October 2012. Brazil has a fully open access distribution model (97%) in which few journals require payment by authors thanks to cultural, financial, operational, and technological support provided by public agencies. In Spain, open access journals account for 55% of the total and have also received support from public agencies, although to a lesser extent. These results show that there are systems support of open access in scientific journals other than the"author pays" model advocated by the Finch report for the United Kingdom.
Resumo:
Personalized medicine is a challenging research area in paediatric treatments. Elaborating new paediatric formulations when no commercial forms are available is a common practice in pharmacy laboratories; among these, oral liquid formulations are the most common. But due to the lack of specialized equipment, frequently studies to assure the efficiency and safety of the final medicine cannot be carried out. Thus the purpose of this work was the development, characterization and stability evaluation of two oral formulations of sildenafil for the treatment of neonatal persistent pulmonary hypertension. After the establishment of a standard operating procedure (SOP) and elaboration, the physicochemical stability parameters appearance, pH, particle size, rheological behaviour and drug content of formulations were evaluated at three different temperatures for 90 days. Equally, prediction of long term stability, as well as, microbiological stability was performed. Formulations resulted in a suspension and a solution slightly coloured exhibiting fruity odour. Formulation I (suspension) exhibited the best physicochemical properties including Newtonian behaviour and uniformity of API content above 90% to assure an exact dosification process.
Resumo:
Understanding nanomaterial interactions within cells is of increasing importance for assessing their toxicity and cellular transport. Here, we developed nanovesicles containing bioactive cationic lysine-based amphiphiles, and assessed whether these cationic compounds increase the likelihood of intracellular delivery and modulate toxicity. We found different cytotoxic responses among the formulations, depending on surfactant, cell line and endpoint assayed. The induction of mitochondrial dysfunction, oxidative stress and apoptosis were the general mechanisms underlying cytotoxicity. Fluorescence microscopy analysis demonstrated that nanovesicles were internalized by HeLa cells, and evidenced that their ability to release endocytosed materials into cell cytoplasm depends on the structural parameters of amphiphiles. The cationic charge position and hydrophobicity of surfactants determine the nanovesicle interactions within the cell and, thus, the resulting toxicity and intracellular behavior after cell uptake of the nanomaterial. The insights into some toxicity mechanisms of these new nanomaterials contribute to reducing the uncertainty surrounding their potential health hazards.
Resumo:
Neural signal processing is a discipline within neuroengineering. This interdisciplinary approach combines principles from machine learning, signal processing theory, and computational neuroscience applied to problems in basic and clinical neuroscience. The ultimate goal of neuroengineering is a technological revolution, where machines would interact in real time with the brain. Machines and brains could interface, enabling normal function in cases of injury or disease, brain monitoring, and/or medical rehabilitation of brain disorders. Much current research in neuroengineering is focused on understanding the coding and processing of information in the sensory and motor systems, quantifying how this processing is altered in the pathological state, and how it can be manipulated through interactions with artificial devices including brain–computer interfaces and neuroprosthetics.