455 resultados para Metabolisme secundari
Resumo:
Hepatocytes from rats that were fed ethanol chronically for 6-8 wk were found to have a modest decrease in cytosolic GSH (24%) and a marked decrease in mitochondrial GSH (65%) as compared with pair-fed controls. Incubation of hepatocytes from ethanol-fed rats for 4 h in modified Fisher's medium revealed a greater absolute and fractional GSH efflux rate than controls with maintenance of constant cellular GSH, indicating increased net GSH synthesis. Inhibition of gamma-glutamyltransferase had no effect on these results, which indicates that no degradation of GSH had occurred during these studies. Enhanced fractional efflux was also noted in the perfused livers from ethanol-fed rats. Incubation of hepatocytes in medium containing up to 50 mM ethanol had no effect on cellular GSH, accumulation of GSH in the medium, or cell viability. Thus, chronic ethanol feeding causes a modest fall in cytosolic and a marked fall in mitochondrial GSH. Fractional GSH efflux and therefore synthesis are increased under basal conditions by chronic ethanol feeding, whereas the cellular concentration of GSH drops to a lower steady state level. Incubation of hepatocytes with ethanol indicates that it has no direct, acute effect on hepatic GSH homeostasis.
Expression cloning of a rat hepatic reduced glutathione transporter with canalicular characteristics
Resumo:
Using the Xenopus oocyte expression system, we have previously identified an approximately 4-kb fraction of mRNA from rat liver that expresses sulfobromophthalein-glutathione (BSP-GSH)-insensitive reduced glutathione (GSH) transport (Fernandez-Checa, J., J. R. Yi, C. Garcia-Ruiz, Z. Knezic, S. Tahara, and N. Kaplowitz. 1993. J. Biol. Chem. 268:2324-2328). Starting with a cDNA library constructed from this fraction, we have now isolated a single clone that expresses GSH transporter activity. The cDNA for the rat canalicular GSH transporter (RcGshT) is 4.05 kb with an open reading frame of 2,505 nucleotides encoding for a polypeptide of 835 amino acids (95,785 daltons). No identifiable homologies were found in searching various databases. An approximately 96-kD protein is generated in in vitro translation of cRNA for RcGshT. Northern blot analysis reveals a single 4-kb transcript in liver, kidney, intestine, lung, and brain. The abundance of mRNA for RcGshT in rat liver increased 3, 6, and 12 h after a single dose of phenobarbital. Insensitivity to BSP-GSH and induction by phenobarbital, unique characteristics of canalicular GSH secretion, suggest that RcGshT encodes for the canalicular GSH transporter.
Resumo:
BACKGROUND: In rats, oral oleoyl-estrone (OE) decreases food intake and body lipid content. The aim of this study was to determine whether OE treatment affects the energy metabolism of pregnant rats and eventually, of their pups; i.e. changes in normal growth patterns and the onset of obesity after weaning. METHODS: Pregnant Wistar rats were treated with daily intragastric gavages of OE in 0.2 ml sunflower oil from days 11 to 21 of pregnancy (i.e. 10 nmol oleoyl-estrone/g/day). Control animals received only the vehicle. Plasma and hormone metabolites were determined together with variations in cellularity of adipose tissue. RESULTS: Treatment decreased food intake and lowered weight gain during late pregnancy, mainly because of reduced adipose tissue accumulation in different sites. OE-treated pregnant rats' metabolic pattern after delivery was similar to that of controls. Neonates from OE-treated rats weighed the same as those from controls. They also maintained the same growth rate up to weaning, but pups from OE-treated rats slowed their growth rate afterwards, despite only limited differences in metabolite concentrations. CONCLUSION: The OE influences on pup growth can be partially buffered by maternal lipid mobilization during the second half of pregnancy. This maternal metabolic "imprinting" may condition the eventual accumulation of adipose tissue after weaning, and its effects can affect the regulation of body weight up to adulthood.
Resumo:
Background: The combination of oleoyl-estrone (OE) and a selective b3-adrenergic agonist (B3A; CL316,243) treatment in rats results in a profound and rapid wasting of body reserves (lipid). Methods: In the present study we investigated the effect of OE (oral gavage) and/or B3A (subcutaneous constant infusion) administration for 10 days to overweight male rats, compared with controls, on three distinct white adipose tissue (WAT) sites: subcutaneous inguinal, retroperitoneal and epididymal. Tissue weight, DNA (and, from these values cellularity), cAMP content and the expression of several key energy handling metabolism and control genes were analyzed and computed in relation to the whole site mass. Results: Both OE and B3A significantly decreased WAT mass, with no loss of DNA (cell numbers). OE decreased and B3A increased cAMP. Gene expression patterns were markedly different for OE and B3A. OE tended to decrease expression of most genes studied, with no changes (versus controls) of lipolytic but decrease of lipogenic enzyme genes. The effects of B3A were widely different, with a generalized increase in the expression of most genes, including the adrenergic receptors, and, especially the uncoupling protein UCP1. Discussion: OE and B3A, elicit widely different responses in WAT gene expression, end producing similar effects, such as shrinking of WAT, loss of fat, maintenance of cell numbers. OE acted essentially on the balance of lipolysislipogenesis and the blocking of the uptake of substrates; its decrease of synthesis favouring lipolysis. B3A induced a shotgun increase in the expression of most regulatory systems in the adipocyte, an effect that in the end favoured again the loss of lipid; this barely selective increase probably produces inefficiency, which coupled with the increase in UCP1 expression may help WAT to waste energy through thermogenesis. Conclusions: There were considerable differences in the responses of the three WAT sites. OE in general lowered gene expression and stealthily induced a substrate imbalance. B3A increasing the expression of most genes enhanced energy waste through inefficiency rather than through specific pathway activation. There was not a synergistic effect between OE and B3A in WAT, but their combined action increased WAT energy waste.
Resumo:
Pentobarbital-anaesthetized male Wistar rats were infused with 6microgkg-1min-1 of noradrenaline. The infusion was supplemented with 8.5 mgkg-1min-1 of D-3-hydroxybutyrate (3-OHB) for 15 min in order to determine its effect on the adrenergic response of the rat. Plasma levels of noradrenaline rose to a plateau of approximately 50 nmoll-1 with infusion. In the group infused with noradrenaline alone, noradrenaline levels were maintained for 1h. Supplementation with 3-OHB induced a decrease in plasma noradrenaline level that was inversely correlated with 3-OHB level. Aortic and interscapular brown adipose tissue temperatures increased with noradrenaline infusion, but the rise was arrested by 3-OHB; replacing 3-OHB with glucose had no effect. Infusion of saline, glucose or 3-OHB in the absence of noradrenaline did not induce a rise in temperature in either tissue. Blood 3-OHB concentration increased to 1.2 mmoll-1 during 3-OHB infusion, decreasing rapidly at the end of infusion. Blood glucose levels increased with noradrenaline infusion; the presence of high 3-OHB levels decreased glucose concentration. The effects observed were transient and dependent on 3-OHB concentration; these effects may help explain most of the other effects of noradrenaline described here. The role of 3-OHB as a regulator of adrenergic responses seems to be part of a complex fail-safe mechanism which prevents wasting.
Resumo:
Oleoyl-estrone (OE) is an adipose-derived signal that decreases energy intake and body lipid, maintaining energy expenditure and glycemic homeostasis. Glucocorticoids protect body lipid and the metabolic status quo. We studied the combined effects of OE and corticosterone in adrenalectomized female rats: daily OE gavages (0 or 10 nmol/g) and slow-release corticosterone pellets at four doses (0, 0.5, 1.7, and 4.8 mg/d). Intact and sham-operated controls were also included. After 8 d, body composition and plasma metabolites and hormones were measured. OE induced a massive lipid mobilization (in parallel with decreased food intake and maintained energy expenditure). Corticosterone increased fat deposition and inhibited the OE-elicited mobilization of body energy, even at the lowest dose. OE enhanced the corticosterone-induced rise in plasma triacylglycerols, and corticosterone blocked the OE-induced decrease in leptin. High corticosterone and OE increased insulin resistance beyond the effects of corticosterone alone. The presence of corticosterone dramatically affected OE effects, reversing its decrease of body energy (lipid) content, with little or no change on food intake or energy expenditure. The maintenance of glycemia and increasing insulin in parallel to the dose of corticosterone indicate a decrease in insulin sensitivity, which is enhanced by OE. The reversal of OE effects on lipid handling, insulin resistance, can be the consequence of a corticosterone-induced OE resistance. Nevertheless, OE effects on cholesterol were largely unaffected. In conclusion, corticosterone administration effectively blocked OE effects on body lipid and energy balance as well as insulin sensitivity and glycemia.
Resumo:
1. The blood flow, PO2, pH and PCO2 have been estimated in portal and suprahepatic veins as well as in hepatic artery of fed and overnight starved rats given an oral glucose load. From these data the net intestinal, hepatic and splanchnic balances for oxygen and bicarbonate were calculated. The oxygen consumption of the intact animal has also been measured under comparable conditions. 2. The direct utilization of oxygen balances as energy equivalents when establishing the contribution of energy metabolism of liver and intestine to the overall energy expenses of the rat, has been found to be incorrect, since it incorporates the intrinsic error of interorgan proton transfer through bicarbonate. Liver and intestine produced high net bicarbonate balances in all situations tested, implying the elimination (by means of oxidative pathways, i.e. consuming additional oxygen) of high amounts of H+ generated with bicarbonate. The equivalence in energy output of the oxygen balances was then corrected for bicarbonate production to 11-54% lower values. 3. Intestine and liver consume a high proportion of available oxygen, about one-half in basal (fed or starved) conditions and about one-third after gavage, the intestine consumption being about 15% in all situations tested and the liver decreasing its oxygen consumption with gavage.
Resumo:
Background: Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results: Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNF¿) values showed overexpression (198%). Conclusion: Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.
Resumo:
Conscious female adult lean and obese Zucker rats were injected through the jugular vein with radioactive iodine-labeled murine leptin; in the ensuing 8 min, four blood samples were sequentially extracted from the carotid artery. The samples were used in a modified RIA for leptin, in which paired tubes received the same amount of either labeled or unlabeled leptin, thus allowing us to estimate both leptin levels and specific radioactivity. The data were used to determine the decay curve parameters from which the half-life of leptin (5.46 ± 0.23 min for lean rats and 6.99 ± 0.75 min for obese rats) as well as the size of its circulating pool (32 pmol/kg for lean rats and 267 pmol/kg for obese rats) and the overall degradation rate (96 fkat/kg for lean rats and 645 fkat/kg for obese rats) were estimated. These values are consistent with the hormonal role of leptin and the need for speedy changes in its levels in response to metabolic challenge.
Resumo:
White adipose tissue (WAT) is a disperse organ acting as energy storage depot and endocrine/paracrine controlling factor in the management of energy availability and inflammation. WAT sites response under energy-related stress is not uniform. In the present study we have analyzed how different WAT sites respond to limited food restriction as a way to better understand the role of WAT in the pathogenesis of the metabolic syndrome.
Resumo:
The activities of aspartate and alanine transaminase, serine dehydratase, arginase, glutamate dehydrogenase, adenylate deaminase and glutamine synthetase were determined in the stomach and small intestine of developing rats. Despite the common embryonic origin of the intestine and stomach, their enzymes showed quite different activity levels and patterns of development, depending on their roles. Most enzyme activities were low during late intrauterine life and after birth, attaining adult levels with the change of diet at weaning. No arginase activity was found in the stomach and no changes were detected in adenylate deaminase in the stomach or intestine throughout the period studied. Alanine transaminase, serine dehydratase and, to some extent, glutamine synthetase levels, significantly higher in late intrauterine life, decreased after birth, suggesting that the foetal stomach has a transient ability to handle amino acids.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
C75 is a synthetic racemic α-methylene-γ-butyrolactone exhibiting anti-tumoral properties in vitro and in vivo as well as inducing hypophagia and weight loss in rodents. These interesting properties are thought to be a consequence of the inhibition of the key enzymes FAS and CPT1 involved in lipid metabolism. The need for larger amounts of this compound for biological evaluation prompted us to develop a convenient and reliable route to multigram quantities of C75 from easily available ethyl penta-3,4-dienoate 6. A recently described protocol for the addition of 6 to a mixture of dicyclohexylborane and nonanal followed by acidic treatment of the crude afforded lactone 8, as a mixture of cis and trans isomers, in good yield. The DBU-catalyzed isomerization of the methyl esters 9 arising from 8 gave a 10:1 trans/cis mixture from which the trans isomer was isolated and easily transformed into C75. The temporary transformation of C75 into a phenylseleno ether derivative makes its purification, manipulation and storage easier.
Resumo:
Background: Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. Results: The study of 13C distribution of Jukat cells exposed to low edelfosine concentration, which induces apoptosis in ¿5% of cells, revealed metabolic changes previous to the development of apoptotic program. Specifically, it was found that low dose of edelfosine stimulates the TCA cycle. These metabolic perturbations were coupled with an increase of nucleic acid synthesis de novo, which indicates acceleration of biosynthetic and reparative processes. The further increase of the TCA cycle fluxes, when higher doses of drug applied, eventually enhance reactive oxygen species (ROS) production and trigger apoptotic program. Conclusion: The application of Isodyn to the analysis of mechanism of edelfosine-induced apoptosis revealed primary drug-induced metabolic changes, which are important for the subsequent initiation of apoptotic program. Initiation of such metabolic changes could be exploited in anticancer therapy.