340 resultados para Gravetat quàntica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inclusive doubly differential cross sections d 2 σ pA /dx F   dp T 2 as a function of Feynman-x (x F ) and transverse momentum (p T ) for the production of K S 0 , Λ and Λ¯ in proton-nucleus interactions at 920 GeV are presented. The measurements were performed by HERA-B in the negative x F range (−0.12

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently showed that a heavy quark moving sufficiently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N=4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1/Nc) effect, a ballpark estimate yields a value of dE/dx for Nc=3 which is comparable to that of other mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently showed that a heavy quark moving sufficiently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N=4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1/Nc) effect, a ballpark estimate yields a value of dE/dx for Nc=3 which is comparable to that of other mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have studied the texturization process of (100) c-Si wafers using a low concentration potassium hydroxide solution in order to obtain good quality textured wafers. The optimization of the etching conditions have led to random but uniform pyramidal structures with good optical properties. Then, symmetric heterojunctions were deposited by Hot-Wire CVD onto these substrates and the Quasi-Steady-State PhotoConductance technique was used to measure passivation quality. Little degradation in the effective lifetime and implicit open circuit voltage of these devices (< 20 mV) was observed in all cases. It is especially remarkable that for big uniform pyramids, the open-circuit voltage is comparable to the values obtained on flat substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we investigate heterojunction emitters deposited by Hot-Wire CVD on p-type crystalline silicon. The emitter structure consists of an n-doped film (20 nm) combined with a thin intrinsic hydrogenated amorphous silicon buffer layer (5 nm). The microstructure of these films has been studied by spectroscopic ellipsometry in the UV-visible range. These measurements reveal that the microstructure of the n-doped film is strongly influenced by the amorphous silicon buffer. The Quasy-Steady-State Photoconductance (QSS-PC) technique allows us to estimate implicit open-circuit voltages near 700 mV for heterojunction emitters on p-type (0.8 Ω·cm) FZ silicon wafers. Finally, 1 cm 2 heterojunction solar cells with 15.4% conversion efficiencies (total area) have been fabricated on flat p-type (14 Ω·cm) CZ silicon wafers with aluminum back-surface-field contact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the angular distributions of leptons from decays of J/ψ"s produced in p-C and p-W collisions at s√=41.6~GeV has been performed in the J/ψ Feynman-x region −0.341 GeV/c a significant dependence on the reference frame is found: the polar anisotropy is more pronounced in the Collins-Soper frame and almost vanishes in the helicity frame, where, instead, a significant azimuthal anisotropy arises.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of a search for the rare two-body charmless baryonic decays TeX and TeX are reported. The analysis uses a data sample, corresponding to an integrated luminosity of 0.9 fb−1, of pp collision data collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. An excess of TeX candidates with respect to background expectations is seen with a statistical significance of 3.3 standard deviations. This is the first evidence for a two-body charmless baryonic B 0 decay. No significant TeX signal is observed, leading to an improvement of three orders of magnitude over previous bounds. If the excess events are interpreted as signal, the 68.3% confidence level intervals on the branching fractions are $ TeX $ where the first uncertainty is statistical and the second is systematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By exciting at 788 nm, we have characterized the near infrared emissions of trivalent thulium ions in monoclinic KGd(WO4)2 single crystals at 1.48 and 1.84 mm as a function of dopant concentration from 0.1% to 10% and temperature from 10 K to room temperature. We used the reciprocity method to calculate the maximum emission cross-section of 3.0310220 cm2 at 1.838 mm for the polarization parallel to the Nm principal optical direction. These results agrees well with the experimental data. Experimental decay times of the 3H4!3F4 and 3F4!3H6 transitions have been measured as a function of thulium concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding energies of deformed even-even nuclei have been analyzed within the framework of a recently proposed microscopic-macroscopic model. We have used the semiclassical Wigner-Kirkwood ̄h expansion up to fourth order, instead of the usual Strutinsky averaging scheme, to compute the shell corrections in a deformed Woods-Saxon potential including the spin-orbit contribution. For a large set of 561 even-even nuclei with Z 8 and N 8, we find an rms deviation from the experiment of 610 keV in binding energies, comparable to the one found for the same set of nuclei using the finite range droplet model of Moller and Nix (656 keV). As applications of our model, we explore its predictive power near the proton and neutron drip lines as well as in the superheavy mass region. Next, we systematically explore the fourth-order Wigner-Kirkwood corrections to the smooth part of the energy. It is found that the ratio of the fourth-order to the second-order corrections behaves in a very regular manner as a function of the asymmetry parameter I=(N−Z)/A. This allows us to absorb the fourth-order corrections into the second-order contributions to the binding energy, which enables us us to simplify and speed up the calculation of deformed nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform Hartree calculations of symmetric and asymmetric semi-infinite nuclear matter in the framework of relativistic models based on effective hadronic field theories as recently proposed in the literature. In addition to the conventional cubic and quartic scalar self-interactions, the extended models incorporate a quartic vector self-interaction, scalar-vector non-linearities and tensor couplings of the vector mesons. We investigate the implications of these terms on nuclear surface properties such as the surface energy coefficient, surface thickness, surface stiffness coefficient, neutron skin thickness and the spin-orbit force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using mean field theory, we have studied Bose-Fermi mixtures in a one-dimensional optical lattice in the case of an attractive boson-fermion interaction. We consider that the fermions are in the degenerate regime and that the laser intensities are such that quantum coherence across the condensate is ensured. We discuss the effect of the optical lattice on the critical rotational frequency for vortex line creation in the Bose-Einstein condensate, as well as how it affects the stability of the boson-fermion mixture. A reduction of the critical frequency for nucleating a vortex is observed as the strength of the applied laser is increased. The onset of instability of the mixture occurs for a sizably lower number of fermions in the presence of a deep optical lattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background:Average energies of nuclear collective modes may be efficiently and accurately computed using a nonrelativistic constrained approach without reliance on a random phase approximation (RPA). Purpose: To extend the constrained approach to the relativistic domain and to establish its impact on the calibration of energy density functionals. Methods: Relativistic RPA calculations of the giant monopole resonance (GMR) are compared against the predictions of the corresponding constrained approach using two accurately calibrated energy density functionals. Results: We find excellent agreement at the 2% level or better between the predictions of the relativistic RPA and the corresponding constrained approach for magic (or semimagic) nuclei ranging from 16 O to 208 Pb. Conclusions: An efficient and accurate method is proposed for incorporating nuclear collective excitations into the calibration of future energy density functionals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The semiclassical Wigner-Kirkwood ̄h expansion method is used to calculate shell corrections for spherical and deformed nuclei. The expansion is carried out up to fourth order in ̄h. A systematic study of Wigner-Kirkwood averaged energies is presented as a function of the deformation degrees of freedom. The shell corrections, along with the pairing energies obtained by using the Lipkin-Nogami scheme, are used in the microscopic-macroscopic approach to calculate binding energies. The macroscopic part is obtained from a liquid drop formula with six adjustable parameters. Considering a set of 367 spherical nuclei, the liquid drop parameters are adjusted to reproduce the experimental binding energies, which yields a root mean square (rms) deviation of 630 keV. It is shown that the proposed approach is indeed promising for the prediction of nuclear masses.