20 resultados para warm-season precipitation
Resumo:
To understand how tree growth has responded to recent climate warming, an understanding of the tree-climate-site complex is necessary. To achieve this, radial growth variability among 204 trees established before 1850 was studied in relation to both climatic and site factors. Seventeen forest stands were sampled in the Spanish Central Pyrenees. Three species were studied: Pinus uncinata, Abies alba, and Pinus sylvestris. For each tree, a ring-width residual chronology was built. All trees cross-dated well, indicating a common influence of the regional climate. For the 1952-1993 period, the radial growth of all species, especially P. uncinata, was positively correlated with warm Novembers during the year before ring formation and warm Mays of the year the annual ring formed. Differences in species-stand elevation modulated the growth-climate associations. Radial growth in P. uncinata at high elevation sites was reduced when May temperatures were colder and May precipitation more abundant. In the 20th century, two contrasting periods in radial growth were observed: one (1900-1949) with low frequency of narrow and wide rings, low mean annual sensitivity, and low common growth variation; and another (1950-1994) with the reverse characteristics. The increased variability in radial growth since the 1950s was observed for all species and sites, which suggests a climatic cause. The low shared variance among tree chronologies during the first half of the 20th century may result from a"relaxation" of the elevation gradient, allowing local site conditions to dominate macroclimatic influence. These temporal trends may be related to the recently reported increase of climatic variability and warmer conditions. This study emphasizes the need to carefully assess the relationships between radial growth and site conditions along ecological gradients to improve dendroclimatic reconstructions.
Resumo:
Daily Precipitation Concentration Index (CI) was used in this paper to investigate the statistical structure of daily precipitation across Europe based on 530 daily rainfall series for the period 1971-2010. Annual CI shows a North- West to South-East gradient (excluding Turkey and Greece). The same gradient is also observed in winter, spring and autumn, while in summer the gradient is North-South. Highest annual and seasonal daily concentrations of rainfall were detected in the western Mediterranean basin, mainly along Spanish and French coastlands. Latitude and distance from the sea seems to play a major role on spatial CI distribution; at subregional scale also relief plays an important role. The Mann-Kendall test did not identify uniform significant pattern in temporal trend across Europe for 1971-2010 period. The only broad areas with increasing annual and seasonal CI values are located in northern and south-western France and northern coastlands of the Iberian Peninsula. This findings suggest that daily precipitation distribution has not significantly changed during the 1971-2010 over Europe.
Resumo:
From 6 to 8 November 1982 one of the most catastrophic flash-flood events was recorded in the Eastern Pyrenees affecting Andorra and also France and Spain with rainfall accumulations exceeding 400 mm in 24 h, 44 fatalities and widespread damage. This paper aims to exhaustively document this heavy precipitation event and examines mesoscale simulations performed by the French Meso-NH non-hydrostatic atmospheric model. Large-scale simulations show the slow-evolving synoptic environment favourable for the development of a deep Atlantic cyclone which induced a strong southerly flow over the Eastern Pyrenees. From the evolution of the synoptic pattern four distinct phases have been identified during the event. The mesoscale analysis presents the second and the third phase as the most intense in terms of rainfall accumulations and highlights the interaction of the moist and conditionally unstable flows with the mountains. The presence of a SW low level jet (30 m s-1) around 1500 m also had a crucial role on focusing the precipitation over the exposed south slopes of the Eastern Pyrenees. Backward trajectories based on Eulerian on-line passive tracers indicate that the orographic uplift was the main forcing mechanism which triggered and maintained the precipitating systems more than 30 h over the Pyrenees. The moisture of the feeding flow mainly came from the Atlantic Ocean (7-9 g kg-1) and the role of the Mediterranean as a local moisture source was very limited (2-3 g kg-1) due to the high initial water vapour content of the parcels and the rapid passage over the basin along the Spanish Mediterranean coast (less than 12 h).
Resumo:
El momento concreto del periodo reproductor puede incidir sobre la actividad diaria y los periodos de reposo de las aves paseriformes. Para investigar este aspecto, hemos analizado los movimientos diarios de 7 machos de curruca cabecinegra Sylvia melanocephala mediante radioseguimiento en un matorral mediterráneo. La actividad tiende en general a decrecer a lo largo del día aunque con algunas variaciones dependiendo del momento concreto del periodo reproductor de cada macho en particular. Se han registrado largos periodos de reposo que no dependen ni del estado reproductor ni del momento del día
Resumo:
Most ecosystems undergo substantial variation over the seasons, ranging from changes in abiotic features, such as temperature, light and precipitation, to changes in species abundance and composition. How seasonality varies along latitudinal gradients is not well known in freshwater ecosystems, despite being very important in predicting the effects of climate change and in helping to advance ecological understanding. Stream temperature is often well correlated with air temperature and influences many ecosystem features such as growth and metabolism of most aquatic organisms. We evaluated the degree of seasonality in ten river mouths along a latitudinal gradient for a set of variables, ranging from air and water temperatures, to physical and chemical properties of water and growth of an invasive fish species (eastern mosquitofish, Gambusia holbrooki ). Our results show that although most of the variation in air temperature was explained by latitude and season, this was not the case for water features, including temperature, in lowland Mediterranean streams, which depended less on season and much more on local factors. Similarly, although there was evidence of latitude-dependent seasonality in fish growth, the relationship was nonlinear and weak and the significant latitudinal differences in growth rates observed during winter were compensated later in the year and did not result in overall differences in size and growth. Our results suggest that although latitudinal differences in air temperature cascade through properties of freshwater ecosystems, local factors and complex interactions often override the water temperature variation with latitude and might therefore hinder projections of species distribution models and effects of climate change