18 resultados para volatile compound
Resumo:
Different compounds have been reported as biomarkers of a smoking habit, but, to date, there is no appropriate biomarker for tobacco-related exposure because the proposed chemicals seem to be nonspecific or they are only appropriate for short-term exposure. Moreover, conventional sampling methodologies require an invasive method because blood or urine samples are required. The use of a microtrap system coupled to gas chromatography–mass spectrometry analysis has been found to be very effective for the noninvasive analysis of volatile organic compounds in breath samples. The levels of benzene, 2,5-dimethylfuran, toluene, o-xylene, and m- p-xylene have been analyzed in breath samples obtained from 204 volunteers (100 smokers, 104 nonsmokers; 147 females, 57 males; ages 16 to 53 years). 2,5-Dimethylfuran was always below the limit of detection (0.005 ppbv) in the nonsmoker population and always detected in smokers independently of the smoking habits. Benzene was only an effective biomarker for medium and heavy smokers, and its level was affected by smoking habits. Regarding the levels of xylenes and toluene, they were only different in heavy smokers and after short-term exposure. The results obtained suggest that 2,5-dimethylfuran is a specific breath biomarker of smoking status independently of the smoking habits (e.g., short- and long-term exposure, light and heavy consumption), and so this compound might be useful as a biomarker of smoking exposure
Resumo:
The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide
Resumo:
We describe the multigram synthesis and in vivo efficacy studies of a donepezil‒huprine hybrid that has been found to display a promising in vitro multitarget profile of interest for the treatment of Alzheimer's disease (AD). Its synthesis features as the key step a novel multigram preparative chromatographic resolution of intermediate racemic huprine Y by chiral HPLC. Administration of this compound to transgenic CL4176 and CL2006 Caenorhabditis elegans strains expressing human Aβ42, here used as simplified animal models of AD, led to a significant protection from the toxicity induced by Aβ42. However, this protective effect was not accompanied, in CL2006 worms, by a reduction of amyloid deposits. Oral administration for 3 months to transgenic APPSL mice, a well-established animal model of AD, improved short-term memory, but did not alter brain levels of Aβ peptides nor cortical and hippocampal amyloid plaque load. Despite the clear protective and cognitive effects of AVCRI104P4, the lack of Aβ lowering effect in vivo might be related to its lower in vitro potency toward Aβ aggregation and formation as compared with its higher anticholinesterase activities. Further lead optimization in this series should thus focus on improving the anti-amyloid/anticholinesterase activity ratio.