146 resultados para underwater robots
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
When unmanned underwater vehicles (UUVs) perform missions near the ocean floor, optical sensors can be used to improve local navigation. Video mosaics allow to efficiently process the images acquired by the vehicle, and also to obtain position estimates. We discuss in this paper the role of lens distortions in this context, proving that degenerate mosaics have their origin not only in the selected motion model or in registration errors, but also in the cumulative effect of radial distortion residuals. Additionally, we present results on the accuracy of different feature-based approaches for self-correction of lens distortions that may guide the choice of appropriate techniques for correcting distortions
Resumo:
This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors
Resumo:
In this paper we describe a system for underwater navigation with AUVs in partially structured environments, such as dams, ports or marine platforms. An imaging sonar is used to obtain information about the location of planar structures present in such environments. This information is incorporated into a feature-based SLAM algorithm in a two step process: (I) the full 360deg sonar scan is undistorted (to compensate for vehicle motion), thresholded and segmented to determine which measurements correspond to planar environment features and which should be ignored; and (2) SLAM proceeds once the data association is obtained: both the vehicle motion and the measurements whose correct association has been previously determined are incorporated in the SLAM algorithm. This two step delayed SLAM process allows to robustly determine the feature and vehicle locations in the presence of large amounts of spurious or unrelated measurements that might correspond to boats, rocks, etc. Preliminary experiments show the viability of the proposed approach
Resumo:
This paper describes a navigation system for autonomous underwater vehicles (AUVs) in partially structured environments, such as dams, harbors, marinas or marine platforms. A mechanical scanning imaging sonar is used to obtain information about the location of planar structures present in such environments. A modified version of the Hough transform has been developed to extract line features, together with their uncertainty, from the continuous sonar dataflow. The information obtained is incorporated into a feature-based SLAM algorithm running an Extended Kalman Filter (EKF). Simultaneously, the AUV's position estimate is provided to the feature extraction algorithm to correct the distortions that the vehicle motion produces in the acoustic images. Experiments carried out in a marina located in the Costa Brava (Spain) with the Ictineu AUV show the viability of the proposed approach
Resumo:
This paper presents the design and implementation of a mission control system (MCS) for an autonomous underwater vehicle (AUV) based on Petri nets. In the proposed approach the Petri nets are used to specify as well as to execute the desired autonomous vehicle mission. The mission is easily described using an imperative programming language called mission control language (MCL) that formally describes the mission execution thread. A mission control language compiler (MCL-C) able to automatically translate the MCL into a Petri net is described and a real-time Petri net player that allows to execute the resulting Petri net onboard an AUV are also presented
Resumo:
Nessie is an Autonomous Underwater Vehicle (AUV) created by a team of students in the Heriot Watt University to compete in the Student Autonomous Underwater Competition, Europe (SAUC-E) in August 2006. The main objective of the project is to find the dynamic equation of the robot, dynamic model. With it, the behaviour of the robot will be easier to understand and movement tests will be available by computer without the need of the robot, what is a way to save time, batteries, money and the robot from water inside itself. The object of the second part in this project is setting a control system for Nessie by using the model
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
This work proposes a parallel architecture for a motion estimation algorithm. It is well known that image processing requires a huge amount of computation, mainly at low level processing where the algorithms are dealing with a great numbers of data-pixel. One of the solutions to estimate motions involves detection of the correspondences between two images. Due to its regular processing scheme, parallel implementation of correspondence problem can be an adequate approach to reduce the computation time. This work introduces parallel and real-time implementation of such low-level tasks to be carried out from the moment that the current image is acquired by the camera until the pairs of point-matchings are detected
Resumo:
We present a seabed profile estimation and following method for close proximity inspection of 3D underwater structures using autonomous underwater vehicles (AUVs). The presented method is used to determine a path allowing the AUV to pass its sensors over all points of the target structure, which is known as coverage path planning. Our profile following method goes beyond traditional seabed following at a safe altitude and exploits hovering capabilities of recent AUV developments. A range sonar is used to incrementally construct a local probabilistic map representation of the environment and estimates of the local profile are obtained via linear regression. Two behavior-based controllers use these estimates to perform horizontal and vertical profile following. We build upon these tools to address coverage path planning for 3D underwater structures using a (potentially inaccurate) prior map and following cross-section profiles of the target structure. The feasibility of the proposed method is demonstrated using the GIRONA 500 AUV both in simulation using synthetic and real-world bathymetric data and in pool trials
Resumo:
Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.
Resumo:
El nombre d'aplicacions dels microrobots en biomedicina creix a mesura que el seu desenvolupament avança. Entre elles hi ha les consistents a examinar cèl·lules amb microrobots cooperants. En aquest treball es presenta un prototip a escala d'aquest problema, convenientment simplificat: dos robots tracten d'agafar una pilota que representa la cèl·lula que s'examina. Com a resultat, s'ha obtingut un algorisme deliberatiu per a la resolució d'aquest problema amb robots homogenis.
Resumo:
Els eixams de robots distribuïts representen tot un món de possibilitats al camp de la microrobòtica, però existeixen pocs estudis que n'analitzin els comportaments socials i les interaccions entre robots autònoms distribuïts. Aquests comportaments han de permetre assolir de la manera més efectiva possible un bon resultat. Prenent com a base l'objectiu esmentat, aquest treball detalla diferents polítiques de cerca i de reconfiguració dels robots i estudia els seus comportaments per tal de determinar quins d'ells són més útils per solucionar un problema concret amb les plagues d'erugues i corcs als camps de cigroneres.