96 resultados para underwater data muling
Resumo:
We explore the determinants of usage of six different types of health care services, using the Medical Expenditure Panel Survey data, years 1996-2000. We apply a number of models for univariate count data, including semiparametric, semi-nonparametric and finite mixture models. We find that the complexity of the model that is required to fit the data well depends upon the way in which the data is pooled across sexes and over time, and upon the characteristics of the usage measure. Pooling across time and sexes is almost always favored, but when more heterogeneous data is pooled it is often the case that a more complex statistical model is required.
Resumo:
This paper provides empirical evidence that continuous time models with one factor of volatility, in some conditions, are able to fit the main characteristics of financial data. It also reports the importance of the feedback factor in capturing the strong volatility clustering of data, caused by a possible change in the pattern of volatility in the last part of the sample. We use the Efficient Method of Moments (EMM) by Gallant and Tauchen (1996) to estimate logarithmic models with one and two stochastic volatility factors (with and without feedback) and to select among them.
Resumo:
We construct estimates of educational attainment for a sample of OECD countries using previously unexploited sources. We follow a heuristic approach to obtain plausible time profiles for attainment levels by removing sharp breaks in the data that seem to reflect changes in classification criteria. We then construct indicators of the information content of our series and a number of previously available data sets and examine their performance in several growth specifications. We find a clear positive correlation between data quality and the size and significance of human capital coefficients in growth regressions. Using an extension of the classical errors in variables model, we construct a set of meta-estimates of the coefficient of years of schooling in an aggregate Cobb-Douglas production function. Our results suggest that, after correcting for measurement error bias, the value of this parameter is well above 0.50.
Resumo:
Based on an behavioral equilibrium exchange rate model, this paper examines the determinants of the real effective exchange rate and evaluates the degree of misalignment of a group of currencies since 1980. Within a panel cointegration setting, we estimate the relationship between exchange rate and a set of economic fundamentals, such as traded-nontraded productivity differentials and the stock of foreign assets. Having ascertained the variables are integrated and cointegrated, the long-run equilibrium value of the fundamentals are estimated and used to derive equilibrium exchange rates and misalignments. Although there is statistical homogeneity, some structural differences were found to exist between advanced and emerging economies.
Resumo:
We present experimental and theoretical analyses of data requirements for haplotype inference algorithms. Our experiments include a broad range of problem sizes under two standard models of tree distribution and were designed to yield statistically robust results despite the size of the sample space. Our results validate Gusfield's conjecture that a population size of n log n is required to give (with high probability) sufficient information to deduce the n haplotypes and their complete evolutionary history. The experimental results inspired our experimental finding with theoretical bounds on the population size. We also analyze the population size required to deduce some fixed fraction of the evolutionary history of a set of n haplotypes and establish linear bounds on the required sample size. These linear bounds are also shown theoretically.
Resumo:
L’anàlisi de l’efecte dels gens i els factors ambientals en el desenvolupament de malalties complexes és un gran repte estadístic i computacional. Entre les diverses metodologies de mineria de dades que s’han proposat per a l’anàlisi d’interaccions una de les més populars és el mètode Multifactor Dimensionality Reduction, MDR, (Ritchie i al. 2001). L’estratègia d’aquest mètode és reduir la dimensió multifactorial a u mitjançant l’agrupació dels diferents genotips en dos grups de risc: alt i baix. Tot i la seva utilitat demostrada, el mètode MDR té alguns inconvenients entre els quals l’agrupació excessiva de genotips pot fer que algunes interaccions importants no siguin detectades i que no permet ajustar per efectes principals ni per variables confusores. En aquest article il•lustrem les limitacions de l’estratègia MDR i d’altres aproximacions no paramètriques i demostrem la conveniència d’utilitzar metodologies parametriques per analitzar interaccions en estudis cas-control on es requereix l’ajust per variables confusores i per efectes principals. Proposem una nova metodologia, una versió paramètrica del mètode MDR, que anomenem Model-Based Multifactor Dimensionality Reduction (MB-MDR). La metodologia proposada té com a objectiu la identificació de genotips específics que estiguin associats a la malaltia i permet ajustar per efectes marginals i variables confusores. La nova metodologia s’il•lustra amb dades de l’Estudi Espanyol de Cancer de Bufeta.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la National Oceanography Centre of Southampton (NOCS), Gran Bretanya, entre maig i juliol del 2006. La possibilitat d’obtenir una estimació precissa de la salinitat marina (SSS) és important per a investigar i predir l’extensió del fenòmen del canvi climàtic. La missió Soil Moisture and Ocean Salinity (SMOS) va ser seleccionada per l’Agència Espacial Europea (ESA) per a obtenir mapes de salinitat de la superfície marina a escala global i amb un temps de revisita petit. Abans del llençament de SMOS es preveu l’anàlisi de la variabilitat horitzontal de la SSS i del potencial de les dades recuperades a partir de mesures de SMOS per a reproduir comportaments oceanogràfics coneguts. L’objectiu de tot plegat és emplenar el buit existent entre les fonts de dades d’entrada/auxiliars fiables i les eines desenvolupades per a simular i processar les dades adquirides segons la configuració de SMOS. El SMOS End-to-end Performance Simulator (SEPS) és un simulador adhoc desenvolupat per la Universitat Politècnica de Catalunya (UPC) per a generar dades segons la configuració de SMOS. Es va utilitzar dades d’entrada a SEPS procedents del projecte Ocean Circulation and Climate Advanced Modeling (OCCAM), utilitzat al NOCS, a diferents resolucions espacials. Modificant SEPS per a poder fer servir com a entrada les dades OCCAM es van obtenir dades de temperatura de brillantor simulades durant un mes amb diferents observacions ascendents que cobrien la zona seleccionada. Les tasques realitzades durant l’estada a NOCS tenien la finalitat de proporcionar una tècnica fiable per a realitzar la calibració externa i per tant cancel•lar el bias, una metodologia per a promitjar temporalment les diferents adquisicions durant les observacions ascendents, i determinar la millor configuració de la funció de cost abans d’explotar i investigar les posibiltats de les dades SEPS/OCCAM per a derivar la SSS recuperada amb patrons d’alta resolució.
Resumo:
Un reto al ejecutar las aplicaciones en un cluster es lograr mejorar las prestaciones utilizando los recursos de manera eficiente, y este reto es mayor al utilizar un ambiente distribuido. Teniendo en cuenta este reto, se proponen un conjunto de reglas para realizar el cómputo en cada uno de los nodos, basado en el análisis de cómputo y comunicaciones de las aplicaciones, se analiza un esquema de mapping de celdas y un método para planificar el orden de ejecución, tomando en consideración la ejecución por prioridad, donde las celdas de fronteras tienen una mayor prioridad con respecto a las celdas internas. En la experimentación se muestra el solapamiento del computo interno con las comunicaciones de las celdas fronteras, obteniendo resultados donde el Speedup aumenta y los niveles de eficiencia se mantienen por encima de un 85%, finalmente se obtiene ganancias de los tiempos de ejecución, concluyendo que si se puede diseñar un esquemas de solapamiento que permita que la ejecución de las aplicaciones SPMD en un cluster se hagan de forma eficiente.
Resumo:
The objective of this paper is to analyse to what extent the use of cross-section data will distort the estimated elasticities for car ownership demand when the observed variables do not correspond to a state equilibrium for some individuals in the sample. Our proposal consists of approximating the equilibrium values of the observed variables by constructing a pseudo-panel data set which entails averaging individuals observed at different points of time into cohorts. The results show that individual and aggregate data lead to almost the same value for income elasticity, whereas with respect to working adult elasticity the similarity is less pronounced.
Resumo:
Report for the scientific sojourn carried out at the University of New South Wales from February to June the 2007. Two different biogeochemical models are coupled to a three dimensional configuration of the Princeton Ocean Model (POM) for the Northwestern Mediterranean Sea (Ahumada and Cruzado, 2007). The first biogeochemical model (BLANES) is the three-dimensional version of the model described by Bahamon and Cruzado (2003) and computes the nitrogen fluxes through six compartments using semi-empirical descriptions of biological processes. The second biogeochemical model (BIOMEC) is the biomechanical NPZD model described in Baird et al. (2004), which uses a combination of physiological and physical descriptions to quantify the rates of planktonic interactions. Physical descriptions include, for example, the diffusion of nutrients to phytoplankton cells and the encounter rate of predators and prey. The link between physical and biogeochemical processes in both models is expressed by the advection-diffusion of the non-conservative tracers. The similarities in the mathematical formulation of the biogeochemical processes in the two models are exploited to determine the parameter set for the biomechanical model that best fits the parameter set used in the first model. Three years of integration have been carried out for each model to reach the so called perpetual year run for biogeochemical conditions. Outputs from both models are averaged monthly and then compared to remote sensing images obtained from sensor MERIS for chlorophyll.
Resumo:
This paper develops a methodology to estimate the entire population distributions from bin-aggregated sample data. We do this through the estimation of the parameters of mixtures of distributions that allow for maximal parametric flexibility. The statistical approach we develop enables comparisons of the full distributions of height data from potential army conscripts across France's 88 departments for most of the nineteenth century. These comparisons are made by testing for differences-of-means stochastic dominance. Corrections for possible measurement errors are also devised by taking advantage of the richness of the data sets. Our methodology is of interest to researchers working on historical as well as contemporary bin-aggregated or histogram-type data, something that is still widely done since much of the information that is publicly available is in that form, often due to restrictions due to political sensitivity and/or confidentiality concerns.
Resumo:
In this paper we analyze the persistence of aggregate real exchange rates (RERs) for a group of EU-15 countries by using sectoral data. The tight relation between aggregate and sectoral persistence recently investigated by Mayoral (2008) allows us to decompose aggregate RER persistence into the persistence of its different subcomponents. We show that the distribution of sectoral persistence is highly heterogeneous and very skewed to the right, and that a limited number of sectors are responsible for the high levels of persistence observed at the aggregate level. We use quantile regression to investigate whether the traditional theories proposed to account for the slow reversion to parity (lack of arbitrage due to nontradibilities or imperfect competition and price stickiness) are able to explain the behavior of the upper quantiles of sectoral persistence. We conclude that pricing to market in the intermediate goods sector together with price stickiness have more explanatory power than variables related to the tradability of the goods or their inputs.
Resumo:
Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.