31 resultados para surface amorphous layer
Resumo:
The influence of radio frequency (rf) power and pressure on deposition rate and structural properties of hydrogenated amorphous silicon (a-Si:H) thin films, prepared by rf glow discharge decomposition of silane, have been studied by phase modulated ellipsometry and Fourier transform infrared spectroscopy. It has been found two pressure regions separated by a threshold value around 20 Pa where the deposition rate increases suddenly. This behavior is more marked as rf power rises and reflects the transition between two rf discharges regimes. The best quality films have been obtained at low pressure and at low rf power but with deposition rates below 0.2 nm/s. In the high pressure region, the enhancement of deposition rate as rf power increases first gives rise to a reduction of film density and an increase of content of hydrogen bonded in polyhydride form because of plasma polymerization reactions. Further rise of rf power leads to a decrease of polyhydride bonding and the material density remains unchanged, thus allowing the growth of a-Si:H films at deposition rates above 1 nm/s without any important detriment of material quality. This overcoming of deposition rate limitation has been ascribed to the beneficial effects of ion bombardment on the a-Si:H growing surface by enhancing the surface mobility of adsorbed reactive species and by eliminating hydrogen bonded in polyhydride configurations.
Resumo:
We investigated the influence of a hydrogenated disordered carbon (a-C:H) layer on the nucleation of diamond. Substrates c-Si<100>, SiAlON, and highly oriented pyrolytic graphite {0001} were used in this study. The substrate surfaces were characterized with Auger electron spectroscopy (AES) while diamond growth was followed with Raman spectroscopy and scanning electron microscopy (SEM). It was found that on silicon and SiAlON substrates the presence of the a-C:H layer enabled diamond to grow readily without any polishing treatment. Moreover, more continuous diamond films could be grown when the substrate was polished with diamond powder prior to the deposition of the a-C:H layer. This important result suggests that the nucleation of diamond occurs readily on disordered carbon surfaces, and that the formation of this type of layer is indeed one step in the diamond nucleation mechanism. Altogether, the data refute the argument that silicon defects play a direct role in the nucleation process. Auger spectra revealed that for short deposition times and untreated silicon surfaces, the deposited layer corresponds to an amorphous carbon layer. In these cases, the subsequent diamond nucleation was found to be limited. However, when the diamond nucleation density was found to be high; i.e., after lengthy deposits of a¿C:H or after diamond polishing, the Auger spectra suggested diamondlike carbon layers.
Resumo:
It is now well accepted that cellular responses to materials in a biological medium reflect greatly the adsorbed biomolecular layer, rather than the material itself. Here, we study by molecular dynamics simulations the competitive protein adsorption on a surface (Vroman effect), i.e. the non-monotonic behavior of the amount of protein adsorbed on a surface in contact with plasma as functions of contact time and plasma concentration. We find a complex behavior, with regimes during which small and large proteins are not necessarily competing between them, but are both competing with others in solution ("cooperative" adsorption). We show how the Vroman effect can be understood, controlled and inverted.
Resumo:
It is now well accepted that cellular responses to materials in a biological medium reflect greatly the adsorbed biomolecular layer, rather than the material itself. Here, we study by molecular dynamics simulations the competitive protein adsorption on a surface (Vroman effect), i.e. the non-monotonic behavior of the amount of protein adsorbed on a surface in contact with plasma as functions of contact time and plasma concentration. We find a complex behavior, with regimes during which small and large proteins are not necessarily competing between them, but are both competing with others in solution ("cooperative" adsorption). We show how the Vroman effect can be understood, controlled and inverted.
Resumo:
In May 1999, the European Space Agency (ESA) selected the Earth Explorer Opportunity Soil Moisture and Ocean Salinity (SMOS) mission to obtain global and frequent soil moisture and ocean salinity maps. SMOS' single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), an L-band two-dimensional aperture synthesis radiometer with multiangular observation capabilities. At L-band, the brightness temperature sensitivity to the sea surface salinity (SSS) is low, approximately 0.5 K/psu at 20/spl deg/C, decreasing to 0.25 K/psu at 0/spl deg/C, comparable to that to the wind speed /spl sim/0.2 K/(m/s) at nadir. However, at a given time, the sea state does not depend only on local winds, but on the local wind history and the presence of waves traveling from far distances. The Wind and Salinity Experiment (WISE) 2000 and 2001 campaigns were sponsored by ESA to determine the impact of oceanographic and atmospheric variables on the L-band brightness temperature at vertical and horizontal polarizations. This paper presents the results of the analysis of three nonstationary sea state conditions: growing and decreasing sea, and the presence of swell. Measured sea surface spectra are compared with the theoretical ones, computed using the instantaneous wind speed. Differences can be minimized using an "effective wind speed" that makes the theoretical spectrum best match the measured one. The impact on the predicted brightness temperatures is then assessed using the small slope approximation/small perturbation method (SSA/SPM).
Resumo:
This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53° incidence angle and with JPL's WINDRAD measurements at incidence angles from 30° to 65°, and at wind speeds from 2.5 to 11 m/s.
Resumo:
A recently developed technique, polarimetric radar interferometry, is applied to tackle the problem of the detection of buried objects embedded in surface clutter. An experiment with a fully polarimetric radar in an anechoic chamber has been carried out using different frequency bands and baselines. The processed results show the ability of this technique to detect buried plastic mines and to measure their depth. This technique enables the detection of plastic mines even if their backscatter response is much lower than that of the surface clutter.
Resumo:
In this work, we investigate heterojunction emitters deposited by Hot-Wire CVD on p-type crystalline silicon. The emitter structure consists of an n-doped film (20 nm) combined with a thin intrinsic hydrogenated amorphous silicon buffer layer (5 nm). The microstructure of these films has been studied by spectroscopic ellipsometry in the UV-visible range. These measurements reveal that the microstructure of the n-doped film is strongly influenced by the amorphous silicon buffer. The Quasy-Steady-State Photoconductance (QSS-PC) technique allows us to estimate implicit open-circuit voltages near 700 mV for heterojunction emitters on p-type (0.8 Ω·cm) FZ silicon wafers. Finally, 1 cm 2 heterojunction solar cells with 15.4% conversion efficiencies (total area) have been fabricated on flat p-type (14 Ω·cm) CZ silicon wafers with aluminum back-surface-field contact.
Resumo:
A detailed in situ spectroellipsometric analysis of the nucleation and growth of hydrogenated amorphous silicon (a:Si:H) is presented. Photoelectronic quality a‐Si:H films are deposited by plasma‐enhanced chemical vapor deposition on smooth metal (NiCr alloy) and crystalline silicon (c‐Si) substrates. The deposition of a‐Si:H is analyzed from the first monolayer up to a final thickness of 1.2 μm. In order to perform an improved analysis, real time ellipsometric trajectories are recorded, using fixed preparation conditions, at various photon energies ranging from 2.2 to 3.6 eV. The advantage of using such a spectroscopic experimental procedure is underlined. New insights into the nucleation and growth mechanisms of a‐Si:H are obtained. The nucleation mechanism on metal and c‐Si substrates is very accurately described assuming a columnar microstructural development during the early stage of the growth. Then, as a consequence of the incomplete coalescence of the initial nuclei, a surface roughness at the 10-15 Å scale is identified during the further growth of a‐Si:H on both substrates. The bulk a‐Si:H grows homogeneously beneath the surface roughness. Finally, an increase of the surface roughness is evidenced during the long term growth of a‐Si:H. However, the nature of the substrate influenced the film growth. In particular, the film thickness involved in the nucleation‐coalescence phase is found lower in the case of c‐Si (67±8 Å) as compared to NiCr (118±22 Å). Likewise films deposited on c‐Si present a smaller surface roughness even if thick samples are considered (>1 μm). More generally, the present study illustrates the capability of in situ spectroellipsometry to precisely analyze fundamental processes in thin‐film growth, but also to monitor the preparation of complex structures on a few monolayers scale.
Resumo:
We present experiments in which the laterally confined flow of a surfactant film driven by controlled surface tension gradients causes the subtended liquid layer to self-organize into an inner upstream microduct surrounded by the downstream flow. The anomalous interfacial flow profiles and the concomitant backflow are a result of the feedback between two-dimensional and three-dimensional microfluidics realized during flow in open microchannels. Bulk and surface particle image velocimetry data combined with an interfacial hydrodynamics model explain the dependence of the observed phenomena on channel geometry.
Resumo:
In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.
Resumo:
Amorphous silicon n-i-p solar cells have been fabricated entirely by Hot-Wire Chemical Vapour Deposition (HW-CVD) at low process temperature < 150 °C. A textured-Ag/ZnO back reflector deposited on Corning 1737F by rf magnetron sputtering was used as the substrate. Doped layers with very good conductivity and a very less defective intrinsic a-Si:H layer were used for the cell fabrication. A double n-layer (μc-Si:H/a-Si:H) and μc-Si:H p-layer were used for the cell. In this paper, we report the characterization of these layers and the integration of these layers in a solar cell fabricated at low temperature. An initial efficiency of 4.62% has been achieved for the n-i-p cell deposited at temperatures below 150 °C over glass/Ag/ZnO textured back reflector.
Resumo:
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Resumo:
In the present chapter some prototype gas and gas-surface processes occurring within the hypersonic flow layer surrounding spacecrafts at planetary entry are discussed. The discussion is based on microscopic dynamical calculations of the detailed cross sections and rate coefficients performed using classical mechanics treatments for atoms, molecules and surfaces. Such treatment allows the evaluation of the efficiency of thermal processes (both at equilibrium and nonequilibrium distributions) based on state-to-state and state specific calculations properly averaged over the population of the initial states. The dependence of the efficiency of the considered processes on the initial partitioning of energy among the various degrees of freedom is discussed.
Resumo:
The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.