18 resultados para shear-stress
Resumo:
Desarrollo de una aplicación para la empresa CCSAgresso, con el objetivo de evaluar el rendimiento en una máquina, mediante los datos aportados por pruebas de simulación. Cada prueba de simulación está contenida en un fichero de texto, cuya lectura y almacenamiento en la base de datos son la base de la aplicación. Los objetivos son poder introducir, actualizar, gestionar y mostrar esos valores de la base de datos con una aplicación sencilla, intuitiva y que realice todas las operaciones que necesita el usuario.
Resumo:
• Quercus ilex L., the dominant species in Mediterranean forests and one with a great capacity for resprouting after disturbances, is threatened by the expected increase in fire frequency and drought associated with climate change. • The aim of this study was to determine the contribution of photosynthesis limitants, especially mesophyll conductance (gmes ) during this species’ resprouting and under summer drought. • Resprouts showed 5.3-fold increased gmes and 3.8-fold increased stomatal conductance (gs) atmidday with respect to leaves of undisturbed individuals. With increased drought, structural changes (decreased density and increased thickness) in resprouts contributed to the observed higher photosynthesis and increased gmes. However, gmes only partially depended on leaf structure, and was also under physiological control. Resprouts also showed lower non-stomatal limitations (around 50% higher carboxylation velocity (Vc,max) and capacity for ribulose-1,5-bisphosphate regeneration (Jmax)). A significant contribution of gmes to leaf carbon isotope discrimination values was observed. • gmes exhibits a dominant role in photosynthesis limitation in Q. ilex and is regulated by factors other than morphology. During resprouting after disturbances, greater capacity to withstand drought, as evidenced by higher gmes , gs and lower non-stomatal limitants, enables increased photosynthesis and rapid growth.
Resumo:
Dietary fatty acid supply can affect stress response in fish during early development. Although knowledge on the mechanisms involved in fatty acid regulation of stress tolerance is scarce, it has often been hypothesised that eicosanoid profiles can influence cortisol production. Genomic cortisol actions are mediated by cytosolic receptors which may respond to cellular fatty acid signalling. An experiment was designed to test the effects of feeding gilthead sea-bream larvae with four microdiets, containing graded arachidonic acid (ARA) levels (0·4, 0·8, 1·5 and 3·0 %), on the expression of genes involved in stress response (steroidogenic acute regulatory protein, glucocorticoid receptor and phosphoenolpyruvate carboxykinase), lipid and, particularly, eicosanoid metabolism (hormone-sensitive lipase, PPARα, phospholipase A2, cyclo-oxygenase-2 and 5-lipoxygenase), as determined by real-time quantitative PCR. Fish fatty acid phenotypes reflected dietary fatty acid profiles. Growth performance, survival after acute stress and similar whole-body basal cortisol levels suggested that sea-bream larvae could tolerate a wide range of dietary ARA levels. Transcription of all genes analysed was significantly reduced at dietary ARA levels above 0·4 %. Nonetheless, despite practical suppression of phospholipase A2 transcription, higher leukotriene B4 levels were detected in larvae fed 3·0 % ARA, whereas a similar trend was observed regarding PGE2 production. The present study demonstrates that adaptation to a wide range of dietary ARA levels in gilthead sea-bream larvae involves the modulation of the expression of genes related to eicosanoid synthesis, lipid metabolism and stress response. The roles of ARA, other polyunsaturates and eicosanoids as signals in this process are discussed.