75 resultados para recognition memory
Resumo:
Plan recognition is the problem of inferring the goals and plans of an agent from partial observations of her behavior. Recently, it has been shown that the problem can be formulated and solved usingplanners, reducing plan recognition to plan generation.In this work, we extend this model-basedapproach to plan recognition to the POMDP setting, where actions are stochastic and states are partially observable. The task is to infer a probability distribution over the possible goals of an agent whose behavior results from a POMDP model. The POMDP model is shared between agent and observer except for the true goal of the agent that is hidden to the observer. The observations are action sequences O that may contain gaps as some or even most of the actions done by the agent may not be observed. We show that the posterior goal distribution P(GjO) can be computed from the value function VG(b) over beliefs b generated by the POMDPplanner for each possible goal G. Some extensionsof the basic framework are discussed, and a numberof experiments are reported.
Resumo:
Having lived through a bloody civil war in the 1930s followed by four decades of General Franco’s dictatorship, the Spanish state carried out a transition to a democratic system at the end of the 1970s. The 1978 Constitution was the legal outcome of this transition process. Among other things, it established a territorial model – the so-called “Estado de las Autonomías” (State of Autonomous Communities) – which was designed to satisfy the historical demands for recognition and self-government of, above all, the citizens and institutions of Catalonia and the Basque Country .In recent years support for independence has increased in Catalonia. Different indicators show that pro-independence demands are endorsed by a majority of its citizens, as well as by most of the political parties and organizations that represent its civil society. This is a new phenomenon. Those in favour of independence had been in the minority throughout the 20th century. Nowadays, however, demands of a pro-autonomy and pro-federalist nature, which until recently had been dominant, have gradually lost public support in favour of demands for self-determination and secession. This paper analyses the massive increase in support for secession in Catalonia during the early years of the 21st century. After describing the different theories of secession in plurinational liberal democracies (section 1), we analyse Catalonia’s political evolution over the past decade focusing on the shortcomings with regard to constitutional recognition and accommodation displayed by the Spanish political system. The latter have been exacerbated by the reform process of Catalonia’s Statute of Autonomy (2006) and the subsequent judgement of Spain’s Constitutional Court regarding the aforementioned Statute (2010) (section 2). Finally, we present our conclusions by linking the Catalan case with theories of secession applied to plurinational contexts
Resumo:
Although it is commonly accepted that most macroeconomic variables are nonstationary, it is often difficult to identify the source of the non-stationarity. In particular, it is well-known that integrated and short memory models containing trending components that may display sudden changes in their parameters share some statistical properties that make their identification a hard task. The goal of this paper is to extend the classical testing framework for I(1) versus I(0)+ breaks by considering a a more general class of models under the null hypothesis: non-stationary fractionally integrated (FI) processes. A similar identification problem holds in this broader setting which is shown to be a relevant issue from both a statistical and an economic perspective. The proposed test is developed in the time domain and is very simple to compute. The asymptotic properties of the new technique are derived and it is shown by simulation that it is very well-behaved in finite samples. To illustrate the usefulness of the proposed technique, an application using inflation data is also provided.
Resumo:
This paper proposes a new time-domain test of a process being I(d), 0 < d = 1, under the null, against the alternative of being I(0) with deterministic components subject to structural breaks at known or unknown dates, with the goal of disentangling the existing identification issue between long-memory and structural breaks. Denoting by AB(t) the different types of structural breaks in the deterministic components of a time series considered by Perron (1989), the test statistic proposed here is based on the t-ratio (or the infimum of a sequence of t-ratios) of the estimated coefficient on yt-1 in an OLS regression of ?dyt on a simple transformation of the above-mentioned deterministic components and yt-1, possibly augmented by a suitable number of lags of ?dyt to account for serial correlation in the error terms. The case where d = 1 coincides with the Perron (1989) or the Zivot and Andrews (1992) approaches if the break date is known or unknown, respectively. The statistic is labelled as the SB-FDF (Structural Break-Fractional Dickey- Fuller) test, since it is based on the same principles as the well-known Dickey-Fuller unit root test. Both its asymptotic behavior and finite sample properties are analyzed, and two empirical applications are provided.
Resumo:
Several features that can be extracted from digital images of the sky and that can be useful for cloud-type classification of such images are presented. Some features are statistical measurements of image texture, some are based on the Fourier transform of the image and, finally, others are computed from the image where cloudy pixels are distinguished from clear-sky pixels. The use of the most suitable features in an automatic classification algorithm is also shown and discussed. Both the features and the classifier are developed over images taken by two different camera devices, namely, a total sky imager (TSI) and a whole sky imager (WSC), which are placed in two different areas of the world (Toowoomba, Australia; and Girona, Spain, respectively). The performance of the classifier is assessed by comparing its image classification with an a priori classification carried out by visual inspection of more than 200 images from each camera. The index of agreement is 76% when five different sky conditions are considered: clear, low cumuliform clouds, stratiform clouds (overcast), cirriform clouds, and mottled clouds (altocumulus, cirrocumulus). Discussion on the future directions of this research is also presented, regarding both the use of other features and the use of other classification techniques
Resumo:
As reflection on the education in the Escola Elisava and of the design education in general, the intervention tries to treat the debates that for many years had existed tacitly between the different academic classes, showing the critical situation that it supposes - especially for the fragile design - that one any of these classes influences over the others. From middle of the 90s, the progressive adoption generalized in the higher education of the Anglo-Saxon model ¿with clear predominance of the institutional thing¿ has showed the indicative character of the critique that here is exhibited.
Resumo:
In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.
Resumo:
Drift is an important issue that impairs the reliability of gas sensing systems. Sensor aging, memory effects and environmental disturbances produce shifts in sensor responses that make initial statistical models for gas or odor recognition useless after a relatively short period (typically few weeks). Frequent recalibrations are needed to preserve system accuracy. However, when recalibrations involve numerous samples they become expensive and laborious. An interesting and lower cost alternative is drift counteraction by signal processing techniques. Orthogonal Signal Correction (OSC) is proposed for drift compensation in chemical sensor arrays. The performance of OSC is also compared with Component Correction (CC). A simple classification algorithm has been employed for assessing the performance of the algorithms on a dataset composed by measurements of three analytes using an array of seventeen conductive polymer gas sensors over a ten month period.
Resumo:
Evidence exists that many natural facts are described better as a fractal. Although fractals are very useful for describing nature, it is also appropiate to review the concept of random fractal in finance. Due to the extraordinary importance of Brownian motion in physics, chemistry or biology, we will consider the generalization that supposes fractional Brownian motion introduced by Mandelbrot.The main goal of this work is to analyse the existence of long range dependence in instantaneous forward rates of different financial markets. Concretelly, we perform an empirical analysis on the Spanish, Mexican and U.S. interbanking interest rate. We work with three time series of daily data corresponding to 1 day operations from 28th March 1996 to 21st May 2002. From among all the existing tests on this matter we apply the methodology proposed in Taqqu, Teverovsky and Willinger (1995).
Resumo:
We have investigated the different contributions to the entropy change at the martensitic transition of different families of Cu-based shape-memory alloys. The total entropy change has been obtained through calorimetric measurements. By measuring the evolution of the magnetic susceptibility with temperature, the entropy change associated with conduction electrons has been evaluated. The contribution of the anharmonic vibrations of the lattice has also been estimated using various parameters associated with the anharmonic behavior of these alloys, collected from the literature. The results found in the present work have been compared to values published for the martensitic transition of group-IV metals. For Cu-based alloys, both electron and anharmonic contributions have been shown to be much smaller than the overall entropy change. This finding demonstrates that the harmonic vibrations of the lattice are the most relevant contribution to the stability of the bcc phase in Cu-based alloys.
Resumo:
Experimental data from ultrasonic and inelastic neutron scattering measurements are analyzed for different families of Cu-based shape-memory alloys. It is shown that the transition occurs at a value, independent of composition and alloy family, of the ratio between the elastic constants associated with the two shears necessary to accomplish the lattice distortion from the bcc to the close-packed structure. The zone boundary frequency of the TA2[110] branch evaluated at the transition point (TM), weakly depends, for each family, on composition. A linear relationship between this frequency and the inverse of the elastic constant C', both quantities evaluated at TM, has been found, in agreement with the prediction of a Landau model proposed for martensitic transformations.
Resumo:
Measurements of the entropy change at the martensitic transition of two composition-related sets of Cu-Al-Mn shape-memory alloys are reported. It is found that most of the entropy change has a vibrational origin, and depends only on the particular close-packed structure of the low-temperature phase. Using data from the literature for other Cu-based alloys, this result is shown to be general. In addition, it is shown that the martensitic structure changes from 18R to 2H when the ratio of conduction electrons per atom reaches the same value as the eutectoid point in the equilibrium phase diagram. This finding indicates that the structure of the metastable low-temperature phase is reminiscent of the equilibrium structure.