37 resultados para quantum state
Resumo:
The ground state structure of few-electron concentric double quantum rings is investigated within the local spin density approximation. Signatures of inter-ring coupling in the addition energy spectrum are identified and discussed. We show that the electronic configurations in these structures can be greatly modulated by the inter-ring distance: At short and long distances the low-lying electron states localize in the inner and outer rings, respectively, and the energy structure is essentially that of an isolated single quantum ring. However, at intermediate distances the electron states localized in the inner and the outer ring become quasidegenerate and a rather entangled, strongly-correlated system is formed.
Resumo:
Within the noncollinear local spin-density approximation, we have studied the ground state structure of a parabolically confined quantum wire submitted to an in-plane magnetic field, including both Rashba and Dresselhaus spin-orbit interactions. We have explored a wide range of linear electronic densities in the weak (strong) coupling regimes that appear when the ratio of spin-orbit to confining energy is small (large). These results are used to obtain the conductance of the wire. In the strong coupling limit, the interplay between the applied magnetic field¿irrespective of the in-plane direction, the exchange-correlation energy, and the spin-orbit energy-produces anomalous plateaus in the conductance vs linear density plots that are otherwise absent, or washes out plateaus that appear when the exchange-correlation energy is not taken into account.
Resumo:
We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure states and of the degree of mixing of unknown single-qubit mixed states, of which N identical copies are available. The most general measuring strategies are considered in both situations, to conclude in the first case that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property, optimally.
Resumo:
Semiclassical theories such as the Thomas-Fermi and Wigner-Kirkwood methods give a good description of the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential is varied. However, in systems with a fixed number of particles N, these methods overbind the actual average of the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are discussed for fermions trapped in a harmonic oscillator potential and in a hard-wall cavity, and for self-consistent calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the energy is also considered.
Resumo:
Characteristic decay times for relaxation close to the marginal point of optical bistability are studied. A model-independent formula for the decay time is given which interpolates between Kramers time for activated decay and a deterministic relaxation time. This formula gives the decay time as a universal scaling function of the parameter which measures deviation from marginality. The standard deviation of the first-passage-time distribution is found to vary linearly with the decay time, close to marginality, with a slope independent of the noise intensity. Our results are substantiated by numerical simulations and their experimental relevance is pointed out.
Resumo:
Recently a new Bell inequality has been introduced by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)], which is strongly resistant to noise for maximally entangled states of two d-dimensional quantum systems. We prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce some other possible measures. The nonmaximally entangled state turns out to be more robust also for these alternative measures. From these results it follows that two von Neumann measurements per party may be not optimal for detecting nonlocality. For d=3,4, we point out some connections between this inequality and distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is distillable.
Resumo:
We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow.
Resumo:
We present a family of 3-qubit states to which any arbitrary state can be depolarized. We fully classify those states with respect to their separability and distillability properties. This provides a sufficient condition for nonseparability and distillability for arbitrary states. We generalize our results to N-particle states.
Resumo:
We prove for any pure three-quantum-bit state the existence of local bases which allow one to build a set of five orthogonal product states in terms of which the state can be written in a unique form. This leads to a canonical form which generalizes the two-quantum-bit Schmidt decomposition. It is uniquely characterized by the five entanglement parameters. It leads to a complete classification of the three-quantum-bit states. It shows that the right outcome of an adequate local measurement always erases all entanglement between the other two parties.
Resumo:
Following a model based on the SU(8) symmetry that treats heavy pseudoscalars and heavy vector mesons on an equal footing, as required by heavy quark symmetry, we study the interaction of baryons and mesons in coupled channels within an unitary approach that generates dynamically poles in the scattering T-matrix. We concentrate in the exotic channels with negative charm quantum number for which there is the experimental claim of one state.
Resumo:
The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x~0.001 . The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x.
Resumo:
We study the contribution to vacuum decay in field theory due to the interaction between the long- and short-wavelength modes of the field. The field model considered consists of a scalar field of mass M with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M-1. This effect makes a substantial contribution to the total decay rate.
Resumo:
We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects of the interaction between long- and short-wavelength modes. This interaction results in a diffusive behavior of the reduced Wigner function describing the state of long-wavelength modes, and thereby to a finite activation rate even at zero temperature. This effect can make a substantial contribution to the total decay rate.
Resumo:
We present a theoretical study of the quantum depinning of domain walls. Our approach extends earlier work by Stamp and confirms his suggestion that quantum tunneling of domain walls in ferromagnets may reveal itself at a macroscopic level in a manner similar to the Josephson effect in superconductors. The rate of tunneling of a domain wall through a barrier formed by a planar defect is calculated in terms of macroscopic parameters of the ferromagnet. A universal behavior of the WKB exponent in the limit of small barriers is demonstrated. The effect of dissipation on the tunneling rate is studied. It is argued that quantum diffusion of domain walls apparently explains a nonthermal magnetic relaxation observed in some materials at low temperatures.