79 resultados para product classification
Resumo:
This article studies how product introduction decisions relate to profitability and uncertainty in the context of multi-product firms and product differentiation. These two features, common to many modern industries, have not received much attention in the literature as compared to the classical problem of firm entry, even if the determinants of firm and product entry are quite different. The theoretical predictions about the sign of the impact of uncertainty on product entry are not conclusive. Therefore, an econometric model relating firms’ product introduction decisions with profitability and profit uncertainty is proposed. Firm’s estimated profits are obtained from a structural model of product demand and supply, and uncertainty is proxied by profits’ variance. The empirical analysis is carried out using data on the Spanish car industry for the period 1990-2000. The results show a positive relationship between product introduction and profitability, and a negative one with respect to profit variability. Interestingly, the degree of uncertainty appears to be a driving force of entry stronger than profitability, suggesting that the product proliferation process in the Spanish car market may have been mainly a consequence of lower uncertainty rather than the result of having a more profitable market. Keywords: Product introduction, entry, uncertainty, multiproduct firms, automobile JEL codes: L11, L13
Resumo:
The goal of this paper is to study the frequency of new product introductions in monopoly markets where demand is subject to transitory saturation. We focus on those types of goods for which consumers purchase at most one unit of each variety, but repeat purchases in the same product category. The model considers infinitely-lived, forward-looking consumers and firms. We show that the share of potential surplus that a monopolist is able to appropriate increases with the frequency of introduction of new products and the intensity of transitory saturation. If the latter is sufficiently strong then the rate of introduction of new products is higher than socially desirable (excessive dynamic product diversity.)
Resumo:
El projecte consisteix en el desenvolupament d'una eina especialitzada per a la classificació i recerca de productes. L'aplicació pot ser fàcilment ampliable per a adaptar-la a qualsevol tipus de producte o necessitat futura. Per a la programació d'aquest projecte es va aprofitar la potència i senzillesa que proporciona l'entorn .NET i els seus llenguatges orientats a objecte, en aquest cas VB.
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques
Resumo:
Consumer reviews, opinions and shared experiences in the use of a product is a powerful source of information about consumer preferences that can be used in recommender systems. Despite the importance and value of such information, there is no comprehensive mechanism that formalizes the opinions selection and retrieval process and the utilization of retrieved opinions due to the difficulty of extracting information from text data. In this paper, a new recommender system that is built on consumer product reviews is proposed. A prioritizing mechanism is developed for the system. The proposed approach is illustrated using the case study of a recommender system for digital cameras
Resumo:
En aquest treball, es proposa un nou mètode per estimar en temps real la qualitat del producte final en processos per lot. Aquest mètode permet reduir el temps necessari per obtenir els resultats de qualitat de les anàlisi de laboratori. S'utiliza un model de anàlisi de componentes principals (PCA) construït amb dades històriques en condicions normals de funcionament per discernir si un lot finalizat és normal o no. Es calcula una signatura de falla pels lots anormals i es passa a través d'un model de classificació per la seva estimació. L'estudi proposa un mètode per utilitzar la informació de les gràfiques de contribució basat en les signatures de falla, on els indicadors representen el comportament de les variables al llarg del procés en les diferentes etapes. Un conjunt de dades compost per la signatura de falla dels lots anormals històrics es construeix per cercar els patrons i entrenar els models de classifcació per estimar els resultas dels lots futurs. La metodologia proposada s'ha aplicat a un reactor seqüencial per lots (SBR). Diversos algoritmes de classificació es proven per demostrar les possibilitats de la metodologia proposada.
Resumo:
This article studies how product introduction decisions relate to profitability and uncertainty in the context of multi-product firms and product differentiation. These two features, common to many modern industries, have not received much attention in the literature as compared to the classical problem of firm entry, even if the determinants of firm and product entry are quite different. The theoretical predictions about the sign of the impact of uncertainty on product entry are not conclusive. Therefore, an econometric model relating firms’ product introduction decisions with profitability and profit uncertainty is proposed. Firm’s estimated profits are obtained from a structural model of product demand and supply, and uncertainty is proxied by profits’ variance. The empirical analysis is carried out using data on the Spanish car industry for the period 1990-2000. The results show a positive relationship between product introduction and profitability, and a negative one with respect to profit variability. Interestingly, the degree of uncertainty appears to be a driving force of entry stronger than profitability, suggesting that the product proliferation process in the Spanish car market may have been mainly a consequence of lower uncertainty rather than the result of having a more profitable market
Resumo:
A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
Usability is critical to consider an interactive software system successful. Usability testing and evaluation during product development have gained wide acceptance as a strategy to improve product quality. Early introduction of usability perspectives in a product is very important in order to provide a clear visibility of the quality aspects not only for the developers, but also for the testing users as well. However, usability evaluation and testing are not commonly taken into consideration as an essential element of the software development process. Then, this paper exposes a proposal to introduce usability evaluation and testing within a software development through reuse of software artifacts. Additionally, it suggests the introduction of an auditor within the classification of actors for usability tests. It also proposes an improvement of checklists used for heuristics evaluation, adding quantitative and qualitative aspects to them
Resumo:
Background: Lynch syndrome (LS) is an autosomal dominant inherited cancer syndrome characterized by early onset cancers of the colorectum, endometrium and other tumours. A significant proportion of DNA variants in LS patients are unclassified. Reports on the pathogenicity of the c.1852_1853AA>GC (p.Lys618Ala) variant of the MLH1 gene are conflicting. In this study, we provide new evidence indicating that this variant has no significant implications for LS.Methods: The following approach was used to assess the clinical significance of the p.Lys618Ala variant: frequency in a control population, case-control comparison, co-occurrence of the p.Lys618Ala variant with a pathogenic mutation, co-segregation with the disease and microsatellite instability in tumours from carriers of the variant. We genotyped p.Lys618Ala in 1034 individuals (373 sporadic colorectal cancer [CRC] patients, 250 index subjects from families suspected of having LS [revised Bethesda guidelines] and 411 controls). Three well-characterized LS families that fulfilled the Amsterdam II Criteria and consisted of members with the p.Lys618Ala variant were included to assess co-occurrence and co-segregation. A subset of colorectal tumour DNA samples from 17 patients carrying the p.Lys618Ala variant was screened for microsatellite instability using five mononucleotide markers.Results: Twenty-seven individuals were heterozygous for the p.Lys618Ala variant; nine had sporadic CRC (2.41%), seven were suspected of having hereditary CRC (2.8%) and 11 were controls (2.68%). There were no significant associations in the case-control and case-case studies. The p.Lys618Ala variant was co-existent with pathogenic mutations in two unrelated LS families. In one family, the allele distribution of the pathogenic and unclassified variant was in trans, in the other family the pathogenic variant was detected in the MSH6 gene and only the deleterious variant co-segregated with the disease in both families. Only two positive cases of microsatellite instability (2/17, 11.8%) were detected in tumours from p.Lys618Ala carriers, indicating that this variant does not play a role in functional inactivation of MLH1 in CRC patients.Conclusions: The p.Lys618Ala variant should be considered a neutral variant for LS. These findings have implications for the clinical management of CRC probands and their relatives.
Resumo:
For the ∼1% of the human genome in the ENCODE regions, only about half of the transcriptionally active regions (TARs) identified with tiling microarrays correspond to annotated exons. Here we categorize this large amount of “unannotated transcription.” We use a number of disparate features to classify the 6988 novel TARs—array expression profiles across cell lines and conditions, sequence composition, phylogenetic profiles (presence/absence of syntenic conservation across 17 species), and locations relative to genes. In the classification, we first filter out TARs with unusual sequence composition and those likely resulting from cross-hybridization. We then associate some of those remaining with proximal exons having correlated expression profiles. Finally, we cluster unclassified TARs into putative novel loci, based on similar expression and phylogenetic profiles. To encapsulate our classification, we construct a Database of Active Regions and Tools (DART.gersteinlab.org). DART has special facilities for rapidly handling and comparing many sets of TARs and their heterogeneous features, synchronizing across builds, and interfacing with other resources. Overall, we find that ∼14% of the novel TARs can be associated with known genes, while ∼21% can be clustered into ∼200 novel loci. We observe that TARs associated with genes are enriched in the potential to form structural RNAs and many novel TAR clusters are associated with nearby promoters. To benchmark our classification, we design a set of experiments for testing the connectivity of novel TARs. Overall, we find that 18 of the 46 connections tested validate by RT-PCR and four of five sequenced PCR products confirm connectivity unambiguously.