106 resultados para phase perturbation
Resumo:
Two concentration methods for fast and routine determination of caffeine (using HPLC-UV detection) in surface, and wastewater are evaluated. Both methods are based on solid-phase extraction (SPE) concentration with octadecyl silica sorbents. A common “offline” SPE procedure shows that quantitative recovery of caffeine is obtained with 2 mL of an elution mixture solvent methanol-water containing at least 60% methanol. The method detection limit is 0.1 μg L−1 when percolating 1 L samples through the cartridge. The development of an “online” SPE method based on a mini-SPE column, containing 100 mg of the same sorbent, directly connected to the HPLC system allows the method detection limit to be decreased to 10 ng L−1 with a sample volume of 100 mL. The “offline” SPE method is applied to the analysis of caffeine in wastewater samples, whereas the “on-line” method is used for analysis in natural waters from streams receiving significant water intakes from local wastewater treatment plants
Resumo:
This letter discusses the detection and correction ofresidual motion errors that appear in airborne synthetic apertureradar (SAR) interferograms due to the lack of precision in the navigationsystem. As it is shown, the effect of this lack of precision istwofold: azimuth registration errors and phase azimuth undulations.Up to now, the correction of the former was carried out byestimating the registration error and interpolating, while the latterwas based on the estimation of the phase azimuth undulations tocompensate the phase of the computed interferogram. In this letter,a new correction method is proposed, which avoids the interpolationstep and corrects at the same time the azimuth phase undulations.Additionally, the spectral diversity technique, used to estimateregistration errors, is critically analyzed. Airborne L-bandrepeat-pass interferometric data of the German Aerospace Center(DLR) experimental airborne SAR is used to validate the method
Resumo:
Precise estimation of propagation parameters inprecipitation media is of interest to improve the performanceof communications systems and in remote sensing applications.In this paper, we present maximum-likelihood estimators ofspecific attenuation and specific differential phase in rain. Themodel used for obtaining the cited estimators assumes coherentpropagation, reflection symmetry of the medium, and Gaussianstatistics of the scattering matrix measurements. No assumptionsabout the microphysical properties of the medium are needed.The performance of the estimators is evaluated through simulateddata. Results show negligible estimators bias and variances closeto Cramer–Rao bounds.
Resumo:
X-ray diffraction analyses of the pure components n-tricosane and n-pentacosane and of their binary mixed samples have enabled us to characterize the crystalline phases observed at low temperature. On the contrary to what was announced in literature on the structural behavior of mixed samples in odd-odd binary systems with D n = 2, the three domains are not all orthorhombic. This work has enabled us to show that two of the domains are, in fact, monoclinic, (Aa, Z = 4) and the other one is orthorhombic (Pca21, Z = 4). The conclusions drawn in this work can be easily transposed to other binary systems of n-alkanes.
Resumo:
This work presents an alternative to generate continuous phase shift of sinusoidal signals based on the use of super harmonic injection locked oscillators (ILO). The proposed circuit is a second harmonic ILO with varactor diodes as tuning elements. In the locking state, by changing the varactor bias, a phase shift instead of a frequency shift is observed at the oscillator output. By combining two of these circuits, relative phases up to 90 could be achieved. Two prototypes of the circuit have been implemented and tested, a hybrid version working in the range of 200-300 MHz and a multichip module (MCM) version covering the 900¿1000 MHz band.
Resumo:
A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.
Resumo:
We study the influence of Nb doping on the TiO2 anatase-to-rutile phase transition, using combined transmission electron microscopy, Raman spectroscopy, x-ray diffraction and selected area electron diffraction analysis. This approach enabled anatase-to-rutile phase transition hindering to be clearly observed for low Nb-doped TiO2 samples. Moreover, there was clear grain growth inhibition in the samples containing Nb. The use of high resolution transmission electron microscopy with our samples provides an innovative perspective compared with previous research on this issue. Our analysis shows that niobium is segregated from the anatase structure before and during the phase transformation, leading to the formation of NbO nanoclusters on the surface of the TiO2 rutile nanoparticles.
Resumo:
We consider systems that can be described in terms of two kinds of degree of freedom. The corresponding ordering modes may, under certain conditions, be coupled to each other. We may thus assume that the primary ordering mode gives rise to a diffusionless first-order phase transition. The change of its thermodynamic properties as a function of the secondary-ordering-mode state is then analyzed. Two specific examples are discussed. First, we study a three-state Potts model in a binary system. Using mean-field techniques, we obtain the phase diagram and different properties of the system as a function of the distribution of atoms on the different lattice sites. In the second case, the properties of a displacive structural phase transition of martensitic type in a binary alloy are studied as a function of atomic order. Because of the directional character of the martensitic-transition mechanism, we find only a very weak dependence of the entropy on atomic order. Experimental results are found to be in quite good agreement with theoretical predictions.
Resumo:
Using the once and thrice energy-weighted moments of the random-phase-approximation strength function, we have derived compact expressions for the average energy of surface collective oscillations of clusters and spheres of metal atoms. The L=0 volume mode has also been studied. We have carried out quantal and semiclassical calculations for Na and Ag systems in the spherical-jellium approximation. We present a rather thorough discussion of surface diffuseness and quantal size effects on the resonance energies.
Resumo:
We present numerical results of the deterministic Ginzburg-Landau equation with a concentration-dependent diffusion coefficient, for different values of the volume fraction phi of the minority component. The morphology of the domains affects the dynamics of phase separation. The effective growth exponents, but not the scaled functions, are found to be temperature dependent.
Resumo:
We study the interfacial modes of a driven diffusive model under suitable nonequilibrium conditions leading to possible instability. The external field parallel to the interface, which sets up a steady-state parallel flux, enhances the growth or decay rates of the interfacial modes. More dramatically, asymmetry in the model can introduce an oscillatory component into the interfacial dispersion relation. In certain circumstances, the applied field behaves as a singular perturbation.
Resumo:
We study the behavior of the random-bond Ising model at zero temperature by numerical simulations for a variable amount of disorder. The model is an example of systems exhibiting a fluctuationless first-order phase transition similar to some field-induced phase transitions in ferromagnetic systems and the martensitic phase transition appearing in a number of metallic alloys. We focus on the study of the hysteresis cycles appearing when the external field is swept from positive to negative values. By using a finite-size scaling hypothesis, we analyze the disorder-induced phase transition between the phase exhibiting a discontinuity in the hysteresis cycle and the phase with the continuous hysteresis cycle. Critical exponents characterizing the transition are obtained. We also analyze the size and duration distributions of the magnetization jumps (avalanches).
Resumo:
Measurements of the entropy change at the martensitic transition of two composition-related sets of Cu-Al-Mn shape-memory alloys are reported. It is found that most of the entropy change has a vibrational origin, and depends only on the particular close-packed structure of the low-temperature phase. Using data from the literature for other Cu-based alloys, this result is shown to be general. In addition, it is shown that the martensitic structure changes from 18R to 2H when the ratio of conduction electrons per atom reaches the same value as the eutectoid point in the equilibrium phase diagram. This finding indicates that the structure of the metastable low-temperature phase is reminiscent of the equilibrium structure.