38 resultados para organic ointment isotonic saline
Resumo:
This article shows the results of an exploratory study related to the separation of organic waste in order to offer suggestions for the improvement of waste disposal communication campaigns. The overall objective is to analyze attitude and behavior of those who do and those who do not separate organic waste, related to a specific promotional campaign carried out in two neighborhoods, in the municipality of Badalona (Spain), within the framework of the study of proenvironmental attitudes and behaviors and based on the Psychosocial Four Spheres Model. 1,010 interviews were conducted and data was analyzed using Chi-Squared Automatic Interaction Detector (CHAID). Waste separation behavior was used as a dependent variable. The reasons given to explain why people do or do not separate organic waste and sociodemographic variables, have been introduced as independent variables. In accordance with the Four Spheres Model, results show significant differences in waste separation. Based on the profiles obtained, we find some predictive variables that facilitate the development of communication campaigns according to the requirements of each community.
Resumo:
To understand dissolved organic carbon (DOC) seasonal dynamics in a coastal oligotrophic site in the north-western Mediterranean Sea, we monitored DOC concentrations monthly over 3 yr, together with the meteorological data and the food-web-related biological processes involved in DOC dynamics. Additional DOC samples were taken in several inshore−offshore transects along the Catalan coast. We found DOC concentrations of ~60 µmol C l−1 in winter, with increasing values through the summer and autumn and reaching 100 to 120 µmol C l−1 in November. There was high inter-annual variability in this summer DOC accumulation, with values of 36, 69 and 13 µmol C l−1 for 2006, 2007 and 2008, respectively. The analysis of the microbial food-web processes involved in the DOC balance did not reveal the causes of this accumulation, since the only occasion on which we observed net DOC production (0.3 ± 1 µmol C l−1 d−1 on average) was in 2007, and the negative DOC balance of 2006 and 2008 did not prevent DOC accumulating. The DOC accumulation episodes coincided with low rates of water renewal (average 0.037 ± 0.021 d−1 from May to October) compared with those of winter to early spring (average 0.11 ± 0.048 d−1 from November to April). Indeed, the amount of DOC accumulated each year was inversely correlated with the average summer rainfall. We hypothesize that decreased DOC turn-over due to photochemical or biological processes mostly active during the summer and low water renewal rate combine to determine seasonal DOC accumulation and influence its inter-annual variability.
Resumo:
Submarine canyons are sites of intense energy and material exchange between the shelf and the deep adjacent basins. To test the hypothesis that active submarine canyons represent preferential conduits of available food for the deep-sea benthos, two mooring lines were deployed at 1200 m depth from November 2008 to November 2009 inside the Blanes canyon and on the adjacent open slope (Catalan Margin, NW Mediterranean Sea). We investigated the fluxes, biochemical composition and food quality of sinking organic carbon (OC). OC fluxes in the canyon and the open slope varied among sampling periods, though not onsistently in the two sites. In particular, while in the open slope the highest OC fluxes were observed in August 2009, in the canyon the highest OC fluxes occurred in AprilMay 2009. For almost the entire study period, the OC fluxes in the canyon were significantly higher than those in the open slope, whereas OC contents of sinking particles collected in the open slope were consistently higher than those in the canyon. This result confirms that submarine canyons are effective conveyors of OC to the deep sea. Particles transferred to the deep sea floor through the canyons are predominantly of inorganic origin, significantly higher than that reaching the open slope at a similar water depth. Using multivariate statistical tests, two major clusters of sampling periods were identified: one in the canyon that grouped trap samples collected in December 2008, oncurrently with the occurrence of a major storm at the sea surface, and associated with increased fluxes of nutritionally available particles from the upper shelf. Another cluster grouped samples from both the canyon and the open slope collected in March 2009, concurrently with the occurrence of the seasonal phytoplankton bloom at the sea surface, and associated with increased fluxes of total phytopigments. Our results confirm the key ecological role of submarine canyons for the functioning of deep-sea ecosystems, and highlight the importance of canyons in linking episodic storms and primary production occurring at the sea surface to the deep sea floor.
Resumo:
This article shows the results of an exploratory study related to the separation of organic waste in order to offer suggestions for the improvement of waste disposal communication campaigns. The overall objective is to analyze attitude and behavior of those who do and those who do not separate organic waste, related to a specific promotional campaign carried out in two neighborhoods, in the municipality of Badalona (Spain), within the framework of the study of proenvironmental attitudes and behaviors and based on the Psychosocial Four Spheres Model. 1,010 interviews were conducted and data was analyzed using Chi-Squared Automatic Interaction Detector (CHAID). Waste separation behavior was used as a dependent variable. The reasons given to explain why people do or do not separate organic waste and sociodemographic variables, have been introduced as independent variables. In accordance with the Four Spheres Model, results show significant differences in waste separation. Based on the profiles obtained, we find some predictive variables that facilitate the development of communication campaigns according to the requirements of each community.
Resumo:
This article shows the results of an exploratory study related to the separation of organic waste in order to offer suggestions for the improvement of waste disposal communication campaigns. The overall objective is to analyze attitude and behavior of those who do and those who do not separate organic waste, related to a specific promotional campaign carried out in two neighborhoods, in the municipality of Badalona (Spain), within the framework of the study of proenvironmental attitudes and behaviors and based on the Psychosocial Four Spheres Model. 1,010 interviews were conducted and data was analyzed using Chi-Squared Automatic Interaction Detector (CHAID). Waste separation behavior was used as a dependent variable. The reasons given to explain why people do or do not separate organic waste and sociodemographic variables, have been introduced as independent variables. In accordance with the Four Spheres Model, results show significant differences in waste separation. Based on the profiles obtained, we find some predictive variables that facilitate the development of communication campaigns according to the requirements of each community.
Resumo:
The effects of the addition to sausage mix of tocopherols (200 mg/kg), a conventional starter culture with or without Staphylococcus carnosus, celery concentrate (CP) (0.23% and 0.46%), and two doses of nitrate (70 and 140 mg/kg expressed as NaNO(3)) on residual nitrate and nitrite amounts, instrumental CIE Lab color, tocol content, oxidative stability, and overall acceptability were studied in fermented dry-cured sausages after ripening and after storage. Nitrate doses were provided by nitrate-rich CP or a chemical grade source. The lower dose complies with the EU requirements governing the maximum for ingoing amounts in organic meat products. Tocopherol addition protected against oxidation, whereas the nitrate dose, nitrate source, or starter culture had little influence on secondary oxidation values. The residual nitrate and nitrite amounts found in the sausages with the lower nitrate dose were within EU-permitted limits for organic meat products and residual nitrate can be further reduced by the presence of the S. carnosus culture. Color measurements were not affected by the CP dose. Product consumer acceptability was not affected negatively by any of the factors studied. As the two nitrate sources behaved similarly for the parameters studied, CP is a useful alternative to chemical ingredients for organic dry-cured sausage production.
Resumo:
Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.
Resumo:
Both the intermolecular interaction energies and the geometries for M ̄ thiophene, M ̄ pyrrole, M n+ ̄ thiophene, and M n+ ̄ pyrrole ͑with M = Li, Na, K, Ca, and Mg; and M n+ = Li+ , Na+ , K+ , Ca2+, and Mg2+͒ have been estimated using four commonly used density functional theory ͑DFT͒ methods: B3LYP, B3PW91, PBE, and MPW1PW91. Results have been compared to those provided by HF, MP2, and MP4 conventional ab initio methods. The PBE and MPW1PW91 are the only DFT methods able to provide a reasonable description of the M ̄ complexes. Regarding M n+ ̄ complexes, the four DFT methods have been proven to be adequate in the prediction of these electrostatically stabilized systems, even though they tend to overestimate the interaction energies.
Resumo:
Es va realitzar una sèrie d'assaigs d'adobat nitrogenat en diferents comarques de la Catalunya interior. En el conjunt d'aquests assaigs es varen comprovar tres mètodes diferents que es va considerar que eren prometedors per tal de millorar la fertilització nitrogenada. Els mètodes assajats eren el mètode del balanç de nitrogen, el del nitrogen mineral i el del contingut de nitrats al suc de la base de les tiges (CNSBT). Els sòls on es van realitzar els assaigs no presentaven cap limitació especial per al cultiu del blat i eren profunds, ben drenats, no salins i de textura mitjana; l'única excepció era un assaig sobre sòl moderadament profund. Per tant, i també pel que fa a la fertilitat química, els sòls s'han de considerar d'un potencial productiu mitjàalt. El mètode del balanç de nitrogen s'ha mostrat com a molt prometedor de cara a definir si cal la magnitud de l'adobat de cobertora per a les condicions estudiades. El mètode de nitrogen mineral també ha estat efectiu en aquest sentit, mentre que el del CNSBT s'ha revelat com a no aplicable en les condicions assajades, on en molts casos l'aigua és també factor limitant. Al llarg dels assaigs s'han identificat un seguit de factors que impedeixen ajustar la fertilitat nitrogenada. Entre aquests cal esmentar la mala estimació de la producció objectiu, la dificultat de predir el N disponible a partir dels adobs orgànics, dificultats de mostreig pel nitrogen nítric i l'efecte crític que té l'erràtica disponibilitat d'aigua que complica molt l'estratègia de fertilització nitrogenada a adoptar.
Resumo:
Outcrops of old strata at the shelf edge resulting from erosive gravity-driven flows have been globally described on continental margins. The reexposure of old strata allows for the reintroduction of aged organic carbon (OC), sequestered in marine sediments for thousands of years, into the modern carbon cycle. This pool of reworked material represents an additional source of C-14-depleted organic carbon supplied to the ocean, in parallel with the weathering of fossil organic carbon delivered by rivers from land. To understand the dynamics and implications of this reexposure at the shelf edge, a biogeochemical study was carried out in the Gulf of Lions (Mediterranean Sea) where erosive processes, driven by shelf dense water cascading, are currently shaping the seafloor at the canyon heads. Mooring lines equipped with sediment traps and current meters were deployed during the cascading season in the southwestern canyon heads, whereas sediment cores were collected along the sediment dispersal system from the prodelta regions down to the canyon heads. Evidence from grain-size, X-radiographs and Pb-210 activity indicate the presence in the upper slope of a shelly-coarse surface stratum overlying a consolidated deposit. This erosive discontinuity was interpreted as being a result of dense water cascading that is able to generate sufficient shear stress at the canyon heads to mobilize the coarse surface layer, eroding the basal strata. As a result, a pool of aged organic carbon (Delta C-14 = -944.5 +/- 24.7%; mean age 23,650 +/- 3,321 ybp) outcrops at the modern seafloor and is reexposed to the contemporary carbon cycle. This basal deposit was found to have relatively high terrigenous organic carbon (lignin = 1.48 +/- 0.14 mg/100 mg OC), suggesting that this material was deposited during the last low sea-level stand. A few sediment trap samples showed anomalously depleted radiocarbon concentrations (Delta C-14 = -704.4 +/- 62.5%) relative to inner shelf (Delta C-14 = -293.4 +/- 134.0%), mid-shelf (Delta C-14 = -366.6 +/- 51.1%), and outer shelf (Delta C-14 = -384 +/- 47.8%) surface sediments. Therefore, although the major source of particulate material during the cascading season is resuspended shelf deposits, there is evidence that this aged pool of organic carbon can be eroded and laterally advected downslope.
Resumo:
The analysis of the shape of excitation-emission matrices (EEMs) is a relevant tool for exploring the origin, transport and fate of dissolved organic matter (DOM) in aquatic ecosystems. Within this context, the decomposition of EEMs is acquiring a notable relevance. A simple mathematical algorithm that automatically deconvolves individual EEMs is described, creating new possibilities for the comparison of DOM fluorescence properties and EEMs that are very different from each other. A mixture model approach is adopted to decompose complex surfaces into sub-peaks. The laplacian operator and the Nelder-Mead optimisation algorithm are implemented to individuate and automatically locate potential peaks in the EEM landscape. The EEMs of a simple artificial mixture of fluorophores and DOM samples collected in a Mediterranean river are used to describe the model application and to illustrate a strategy that optimises the search for the optimal output.
Resumo:
Submarine canyons are sites of intense energy and material exchange between the shelf and the deep adjacent basins. To test the hypothesis that active submarine canyons represent preferential conduits of available food for the deep-sea benthos, two mooring lines were deployed at 1200 m depth from November 2008 to November 2009 inside the Blanes canyon and on the adjacent open slope (Catalan Margin, NW Mediterranean Sea). We investigated the fluxes, biochemical composition and food quality of sinking organic carbon (OC). OC fluxes in the canyon and the open slope varied among sampling periods, though not onsistently in the two sites. In particular, while in the open slope the highest OC fluxes were observed in August 2009, in the canyon the highest OC fluxes occurred in April-May 2009. For almost the entire study period, the OC fluxes in the canyon were significantly higher than those in the open slope, whereas OC contents of sinking particles collected in the open slope were consistently higher than those in the canyon. This result confirms that submarine canyons are effective conveyors of OC to the deep sea. Particles transferred to the deep sea floor through the canyons are predominantly of inorganic origin, significantly higher than that reaching the open slope at a similar water depth. Using multivariate statistical tests, two major clusters of sampling periods were identified: one in the canyon that grouped trap samples collected in December 2008, oncurrently with the occurrence of a major storm at the sea surface, and associated with increased fluxes of nutritionally available particles from the upper shelf. Another cluster grouped samples from both the canyon and the open slope collected in March 2009, concurrently with the occurrence of the seasonal phytoplankton bloom at the sea surface, and associated with increased fluxes of total phytopigments. Our results confirm the key ecological role of submarine canyons for the functioning of deep-sea ecosystems, and highlight the importance of canyons in linking episodic storms and primary production occurring at the sea surface to the deep sea floor.
Resumo:
Biofilters degrade only a small fraction of the natural organic matter (NOM) contained in seawater which is the leading cause of biofouling in downstream processes. This work studies the effects of chemical additions on NOM biodegradation by biofilters. In this work, biofiltration of seawater with an empty bed contact time (EBCT) of 6 min and a hydraulic loading rate of 10 m h-1 reduces the biological oxygen demand (BOD7) by 8%, the dissolved organic carbon (DOC) by 6% and the UV absorbance at 254 nm (A254) by 7%. Different amounts of ammonium chloride are added to the seawater (up to twice the total dissolved nitrogen in untreated seawater) to study its possible effect on the removal of NOM by a pilot-scale biofilter. Seawater is amended with different amounts of easily biodegradable dissolved organic carbon (BDOC) supplied as sodium acetate (up to twice the DOC) for the same purpose. The results of this work reveal that the ammonium chloride additions do not significantly affect NOM removal and the sodium acetate is completely consumed by the biofiltration process. For both types of chemical additions, the BOD7, DOC and A254 in the outlet stream of the biofilter are similar to the values for the untreated control. These results indicate that this biofilter easily removes the BDOC from the seawater when the EBCT is not above 6 min. Furthermore, nitrogen does not limit the NOM biodegradation in seawater under these experimental conditions.
Resumo:
Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.
Resumo:
Electron scattering on unstable nuclei is planned in future facilities of the GSI and RIKEN upgrades. Motivated by this fact, we study theoretical predictions for elastic electron scattering in the N=82, N=50, and N=14 isotonic chains from very proton-deficient to very proton-rich isotones. We compute the scattering observables by performing Dirac partial-wave calculations. The charge density of the nucleus is obtained with a covariant nuclear mean-field model that accounts for the low-energy electromagnetic structure of the nucleon. For the discussion of the dependence of scattering observables at low-momentum transfer on the gross properties of the charge density, we fit Helm model distributions to the self-consistent mean-field densities. We find that the changes shown by the electric charge form factor along each isotonic chain are strongly correlated with the underlying proton shell structure of the isotones. We conclude that elastic electron scattering experiments on isotones can provide valuable information about the filling order and occupation of the single-particle levels of protons.