52 resultados para open quantum system
Resumo:
Selenocysteine (Sec) is co-translationally inserted into selenoproteins in response to codon UGA with the help of the selenocysteine insertion sequence (SECIS) element. The number of selenoproteins in animals varies, with humans having 25 and mice having 24 selenoproteins. To date, however, only one selenoprotein, thioredoxin reductase, has been detected in Caenorhabditis elegans, and this enzyme contains only one Sec. Here, we characterize the selenoproteomes of C.elegans and Caenorhabditis briggsae with three independent algorithms, one searching for pairs of homologous nematode SECIS elements, another searching for Cys- or Sec-containing homologs of potential nematode selenoprotein genes and the third identifying Sec-containing homologs of annotated nematode proteins. These methods suggest that thioredoxin reductase is the only Sec-containing protein in the C.elegans and C.briggsae genomes. In contrast, we identified additional selenoproteins in other nematodes. Assuming that Sec insertion mechanisms are conserved between nematodes and other eukaryotes, the data suggest that nematode selenoproteomes were reduced during evolution, and that in an extreme reduction case Sec insertion systems probably decode only a single UGA codon in C.elegans and C.briggsae genomes. In addition, all detected genes had a rare form of SECIS element containing a guanosine in place of a conserved adenosine present in most other SECIS structures, suggesting that in organisms with small selenoproteomes SECIS elements may change rapidly.
Resumo:
This paper describes a Computer-Supported Collaborative Learning (CSCL) case study in engineering education carried out within the context of a network management course. The case study shows that the use of two computing tools developed by the authors and based on Free- and Open-Source Software (FOSS) provide significant educational benefits over traditional engineering pedagogical approaches in terms of both concepts and engineering competencies acquisition. First, the Collage authoring tool guides and supports the course teacher in the process of authoring computer-interpretable representations (using the IMS Learning Design standard notation) of effective collaborative pedagogical designs. Besides, the Gridcole system supports the enactment of that design by guiding the students throughout the prescribed sequence of learning activities. The paper introduces the goals and context of the case study, elaborates onhow Collage and Gridcole were employed, describes the applied evaluation methodology, anddiscusses the most significant findings derived from the case study.
Resumo:
In the context of the CompMusic project we are developing methods to automatically describe/annotate audio music recordings pertaining to various music cultures. As away to demonstrate the usefulness of the methods we are also developing a system to browse and interact with specific audio collections. The system is an online web application that interfaces with all the data gathered (audio, scores plus contextual information) and all the descriptions that are automatically generated with the developed methods. In this paper we present the basic architecture of the proposed system, the types of data sources that it includes,and we mention some of the culture specific issues that we are working on for its development. The system is in a preliminary stage but it shows the potential that MIR technologies can have in browsing and interacting with musiccollections of various cultures.
Resumo:
This final year project presents the design principles and prototype implementation of BIMS (Biomedical Information Management System), a flexible software system which provides an infrastructure to manage all information required by biomedical research projects.The BIMS project was initiated with the motivation to solve several limitations in medical data acquisition of some research projects, in which Universitat Pompeu Fabra takes part. These limitations,based on the lack of control mechanisms to constraint information submitted by clinicians, impact on the data quality, decreasing it.BIMS can easily be adapted to manage information of a wide variety of clinical studies, not being limited to a given clinical specialty. The software can manage both, textual information, like clinical data (measurements, demographics, diagnostics, etc ...), as well as several kinds of medical images (magnetic resonance imaging, computed tomography, etc ...). Moreover, BIMS provides a web - based graphical user interface and is designed to be deployed in a distributed andmultiuser environment. It is built on top of open source software products and frameworks.Specifically, BIMS has been used to represent all clinical data being currently used within the CardioLab platform (an ongoing project managed by Universitat Pompeu Fabra), demonstratingthat it is a solid software system, which could fulfill requirements of a real production environment.
Resumo:
The computer code system PENELOPE (version 2008) performs Monte Carlo simulation of coupledelectron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV toabout 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme.Electron and positron histories are generated on the basis of a mixed procedure, which combinesdetailed simulation of hard events with condensed simulation of soft interactions. A geometry packagecalled PENGEOM permits the generation of random electron-photon showers in material systemsconsisting of homogeneous bodies limited by quadric surfaces, i.e., planes, spheres, cylinders, etc. Thisreport is intended not only to serve as a manual of the PENELOPE code system, but also to provide theuser with the necessary information to understand the details of the Monte Carlo algorithm.
Resumo:
In recent years, several authors have revised the calibrations used to compute physical parameters (tex2html_wrap_inline498, tex2html_wrap_inline500, log g, [Fe/H]) from intrinsic colours in the tex2html_wrap_inline504 photometric system. For reddened stars, these intrinsic colours can be computed through the standard relations among colour indices for each of the regions defined by Strömgren (1966) on the HR diagram. We present a discussion of the coherence of these calibrations for main-sequence stars. Stars from open clusters are used to carry out this analysis. Assuming that individual reddening values and distances should be similar for all the members of a given open cluster, systematic differences among the calibrations used in each of the photometric regions might arise when comparing mean reddening values and distances for the members of each region. To classify the stars into Strömgren's regions we extended the algorithm presented by Figueras et al. (1991) to a wider range of spectral types and luminosity classes. The observational ZAMS are compared with the theoretical ZAMS from stellar evolutionary models, in the range tex2html_wrap_inline506 K. The discrepancies are also discussed.
Resumo:
Frequently the choice of a library management program is conditioned by social, economic and/or political factors that result in the selection of a system that is not altogether suitable for the library’s needs, characteristics and functions. Open source software is quickly becoming a preferred solution, owing to the freedom to copy, modify and distribute it and the freedom from contracts, as well as for greater opportunities for interoperability with other applications. These new trends regarding open source software in libraries are also reflected in LIS studies, as evidenced by the different courses addressing automated programs, repositorymanagement, including the Linux/GNU operating system, among others. The combination of the needs of the centres and the new trends for open source software is the focus of a virtual laboratory for the use of open source software for library applications. It was the result of a project, whose aim was to make a useful contribution to the library community, that was carried out by a group of professors of the School of Library and Information Science of the University of Barcelona, together with a group of students, members of a Working Group on Open Source Software for Information Professionals, of the Professional Library Association of Catalonia.
Resumo:
Within current-density-functional theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (Beta) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of Beta, and compared with available experimental and theoretical results.
Resumo:
We have investigated the structure of double quantum dots vertically coupled at zero magnetic field within local-spin-density functional theory. The dots are identical and have a finite width, and the whole system is axially symmetric. We first discuss the effect of thickness on the addition spectrum of one single dot. Next we describe the structure of coupled dots as a function of the interdot distance for different electron numbers. Addition spectra, Hund's rule, and molecular-type configurations are discussed. It is shown that self-interaction corrections to the density-functional results do not play a very important role in the calculated addition spectra
Resumo:
We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed.
Resumo:
The ground state structure of few-electron concentric double quantum rings is investigated within the local spin density approximation. Signatures of inter-ring coupling in the addition energy spectrum are identified and discussed. We show that the electronic configurations in these structures can be greatly modulated by the inter-ring distance: At short and long distances the low-lying electron states localize in the inner and outer rings, respectively, and the energy structure is essentially that of an isolated single quantum ring. However, at intermediate distances the electron states localized in the inner and the outer ring become quasidegenerate and a rather entangled, strongly-correlated system is formed.
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.
Resumo:
We study the contribution to vacuum decay in field theory due to the interaction between the long- and short-wavelength modes of the field. The field model considered consists of a scalar field of mass M with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M-1. This effect makes a substantial contribution to the total decay rate.
Resumo:
We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects of the interaction between long- and short-wavelength modes. This interaction results in a diffusive behavior of the reduced Wigner function describing the state of long-wavelength modes, and thereby to a finite activation rate even at zero temperature. This effect can make a substantial contribution to the total decay rate.
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.