25 resultados para multi-scale modeling
Resumo:
This paper presents a comparison of the changes in the energetic metabolic pattern of China and India, the two most populated countries in the world, with two economies undergoing an important economic transition. The comparison of the changes in the energetic metabolic pattern has the scope to characterize and explain a bifurcation in their evolutionary path in the recent years, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach. The analysis shows an impressive transformation of China’s energy metabolism determined by the joining of the WTO in 2001. Since then, China became the largest factory of the world with a generalized capitalization of all sectors ―especially the industrial sector― boosting economic labor productivity as well as total energy consumption. India, on the contrary, lags behind when considering these factors. Looking at changes in the household sector (energy metabolism associated with final consumption) in the case of China, the energetic metabolic rate (EMR) soared in the last decade, also thanks to a reduced growth of population, whereas in India it remained stagnant for the last 40 years. This analysis indicates a big challenge for India for the next decade. In the light of the data analyzed both countries will continue to require strong injections of technical capital requiring a continuous increase in their total energy consumption. When considering the size of these economies it is easy to guess that this may induce a dramatic increase in the price of energy, an event that at the moment will penalize much more the chance of a quick economic development of India.
Resumo:
Background Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations. Method We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure. Results We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis. Conclusion CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.
Resumo:
We propose an innovative, integrated, cost-effective health system to combat major non-communicable diseases (NCDs), including cardiovascular, chronic respiratory, metabolic, rheumatologic and neurologic disorders and cancers, which together are the predominant health problem of the 21st century. This proposed holistic strategy involves comprehensive patient-centered integrated care and multi-scale, multi-modal and multi-level systems approaches to tackle NCDs as a common group of diseases. Rather than studying each disease individually, it will take into account their intertwined gene-environment, socio-economic interactions and co-morbidities that lead to individual-specific complex phenotypes. It will implement a road map for predictive, preventive, personalized and participatory (P4) medicine based on a robust and extensive knowledge management infrastructure that contains individual patient information. It will be supported by strategic partnerships involving all stakeholders, including general practitioners associated with patient-centered care. This systems medicine strategy, which will take a holistic approach to disease, is designed to allow the results to be used globally, taking into account the needs and specificities of local economies and health systems.
Resumo:
We propose an innovative, integrated, cost-effective health system to combat major non-communicable diseases (NCDs), including cardiovascular, chronic respiratory, metabolic, rheumatologic and neurologic disorders and cancers, which together are the predominant health problem of the 21st century. This proposed holistic strategy involves comprehensive patient-centered integrated care and multi-scale, multi-modal and multi-level systems approaches to tackle NCDs as a common group of diseases. Rather than studying each disease individually, it will take into account their intertwined gene-environment, socio-economic interactions and co-morbidities that lead to individual-specific complex phenotypes. It will implement a road map for predictive, preventive, personalized and participatory (P4) medicine based on a robust and extensive knowledge management infrastructure that contains individual patient information. It will be supported by strategic partnerships involving all stakeholders, including general practitioners associated with patient-centered care. This systems medicine strategy, which will take a holistic approach to disease, is designed to allow the results to be used globally, taking into account the needs and specificities of local economies and health systems.
Resumo:
This paper provides a spatial and temporal multi-scale approach of European submarine canyons. We fi rst present the long-term geologic view of European margins as related to controls on submarine canyon development. Then we discuss the extent to which submarine canyon systems resemble river systems because both essentially form drainage networks. Finally, we deal with the hortest-term, highestresolution scale to get a fl avor of the current functioning and health of modern submarine canyons in the northwestern Mediterranean Sea. Submarine canyons are unique features of the seafl oor whose existence was known by European fi shermen centuries ago, especially for those canyons that have their heads at short distance from shoreline. Popular names given to specifi c canyons in the different languages spoken in European coastal communities refer to the concepts of a"deep" or"trench." In the old times it was also common thinking that submarine canyons where so deep that nobody could measure their depth or even that they had no bottom. Submarine canyons are just one of the seven different types of seafl oor valleys identifi ed by Shepard (1973) in his pioneering morphogenetic classifi cation. Shepard (1973) defined submarine canyons as"steep-walled, sinuous valleys, with V-shaped cross sections, and relief comparable even to the largest of land canyons; tributaries are found in most of the canyons and rock outcrops abound on their walls." Canyons are features typical of continental slopes with their upper reaches and heads cut into the continental shelf.
Resumo:
Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood. Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results. Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks.
Resumo:
The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.
Resumo:
We have investigated the behavior of bistable cells made up of four quantum dots and occupied by two electrons, in the presence of realistic confinement potentials produced by depletion gates on top of a GaAs/AlGaAs heterostructure. Such a cell represents the basic building block for logic architectures based on the concept of quantum cellular automata (QCA) and of ground state computation, which have been proposed as an alternative to traditional transistor-based logic circuits. We have focused on the robustness of the operation of such cells with respect to asymmetries derived from fabrication tolerances. We have developed a two-dimensional model for the calculation of the electron density in a driven cell in response to the polarization state of a driver cell. Our method is based on the one-shot configuration-interaction technique, adapted from molecular chemistry. From the results of our simulations, we conclude that an implementation of QCA logic based on simple ¿hole arrays¿ is not feasible, because of the extreme sensitivity to fabrication tolerances. As an alternative, we propose cells defined by multiple gates, where geometrical asymmetries can be compensated for by adjusting the bias voltages. Even though not immediately applicable to the implementation of logic gates and not suitable for large scale integration, the proposed cell layout should allow an experimental demonstration of a chain of QCA cells.
Resumo:
Global warming mitigation has recently become a priority worldwide. A large body of literature dealing with energy related problems has focused on reducing greenhouse gases emissions at an engineering scale. In contrast, the minimization of climate change at a wider macroeconomic level has so far received much less attention. We investigate here the issue of how to mitigate global warming by performing changes in an economy. To this end, we make use of a systematic tool that combines three methods: linear programming, environmentally extended input output models, and life cycle assessment principles. The problem of identifying key economic sectors that contribute significantly to global warming is posed in mathematical terms as a bi criteria linear program that seeks to optimize simultaneously the total economic output and the total life cycle CO2 emissions. We have applied this approach to the European Union economy, finding that significant reductions in global warming potential can be attained by regulating specific economic sectors. Our tool is intended to aid policymakers in the design of more effective public policies for achieving the environmental and economic targets sought.
Resumo:
Modeling ecological niches of species is a promising approach for predicting the geographic potential of invasive species in new environments. Argentine ants (Linepithema humile) rank among the most successful invasive species: native to South America, they have invaded broad areas worldwide. Despite their widespread success, little is known about what makes an area susceptible - or not - to invasion. Here, we use a genetic algorithm approach to ecological niche modeling based on high-resolution remote-sensing data to examine the roles of niche similarity and difference in predicting invasions by this species. Our comparisons support a picture of general conservatism of the species' ecological characteristics, in spite of distinct geographic and community contexts