31 resultados para misure sperimentali localizzazione indoor ranging reti wireless
Resumo:
Expressions relating spectral efficiency, power, and Doppler spectrum, are derived for Rayleigh-faded wireless channels with Gaussian signal transmission. No side information on the state of the channel is assumed at the receiver. Rather, periodic reference signals are postulated in accordance with the functioning of most wireless systems. The analysis relies on a well-established lower bound, generally tight and asymptotically exact at low SNR. In contrast with most previous studies, which relied on block-fading channel models, a continuous-fading model is adopted. This embeds the Doppler spectrum directly in the derived expressions, imbuing them with practical significance. Closed-form relationships are obtained for the popular Clarke-Jakes spectrum and informative expansions, valid for arbitrary spectra, are found for the low- and high-power regimes. While the paper focuses on scalar channels, the extension to multiantenna settings is also discussed.
Resumo:
Expressions relating spectral efficiency, power and Doppler spectrum are derived for low-power Rayleighfaded wireless channels with proper complex signaling. Noside information on the state of the channel is assumed at the receiver. Rather, periodic reference signals are postulated inaccordance with the functioning of most wireless systems. In contrast with most previous studies, which relied on block-fading channel models, a continuous-fading model is adopted. This embeds the Doppler spectrum directly in thederived expressions thereby imbuing them with practical significance.
Resumo:
This paper aims at illustrating some applications of Finite Random Set (FRS) theory to the design and analysis of wireless communication receivers, and at pointing out similarities and differences between this scenario and that pertaining to multi-target tracking, where the use of FRS has been traditionally advocated. Two case studies are considered, l.e., multiuser detection in a dynamic environment, and multicarrier (OFDM) transmission on a frequency-selective channel. Detector designand performance evaluation are discussed, along with the advantages of importing FRS-based estimation techniques to the context of wireless communications.
Resumo:
ADSL is becoming the standard form of residential and small-business broadband Internet access due to, primarily, its low deployment cost. These ADSL residential lines are often deployed with 802.11 Access Points (AP) that providewireless connectivity. Given the density of ADSL deployment, it is often possible for a residential wireless client to be in range of several other APs, belonging to neighbors, with ADSL connectivity. While the ADSL technology has showed evident limits in terms of capacity (with speeds ranging 1-10 Mbps), the short-range wireless communication can guarantee a muchhigher capacity (up to 20 Mbps). Furthermore, the ADSL links in the neighborhood are generally under-utilized, since ADSL subscribers do not connect 100% of the time. Therefore, it is possible for a wireless client to simultaneously connect to several APs in range and effectively aggregate their available ADSL bandwidth.In this paper, we introduce ClubADSL, a wireless client that can simultaneously connect to several APs in range on different frequencies and aggregate both their downlink and uplink capacity. ClubADSL is a software that runs locally on the client-side, and it requires neither modification to the existing Internet infrastructure, nor any hardware/protocol upgradesto the 802.11 local area network. We show the feasibility of ClubADSL in seamlessly transmitting TCP traffic, and validate its implementation both in controlled scenarios and with current applications over real ADSL lines. In particular we show that a ClubADSL client can greatly benefit from the aggregated download bandwidth in the case of server-client applications such as video streaming, but can also take advantage of the increased upload bandwidth greatly reducing download times with incentive-based P2P applications such as BitTorrent.
Resumo:
The optimization of the pilot overhead in wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-usedblock fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with thenormalized Doppler frequency multiplied by the number of transmit antennas.
Resumo:
The purpose of this paper is to examine (1) some of the models commonly used to represent fading,and (2) the information-theoretic metrics most commonly used to evaluate performance over those models. We raise the question of whether these models and metrics remain adequate in light of the advances that wireless systems haveundergone over the last two decades. Weaknesses are pointedout, and ideas on possible fixes are put forth.
Resumo:
In this paper, we have presented results on silicon thin films deposited by hot-wire CVD at low substrate temperatures (200 °C). Films ranging from amorphous to nanocrystalline were obtained by varying the filament temperature from 1500 to 1800 °C. A crystalline fraction of 50% was obtained for the sample deposited at 1700 °C. The results obtained seemed to indicate that atomic hydrogen plays a leading role in the obtaining of nanocrystalline silicon. The optoelectronic properties of the amorphous material obtained in these conditions are slightly poorer than the ones observed in device-grade films grown by plasma-enhanced CVD due to a higher hydrogen incorporation (13%).
Resumo:
Trabajo de final de carrera enfocado a la simulación de una WSN (Wireless Sensors Networks) mediante el programa Contiki 2.7 y el SO Ubuntu. La idea global del proyecto es conseguir simular un entorno con nodos sensores y, a posteriori, comprobar su correcto funcionamiento en motas reales, comprobando los resultados obtenidos en ambos entornos. De esta manera se puede facilitar la puesta en marcha de este tipo de redes inalámbricas en una aplicación real.
Resumo:
Testbeds are a stage between the simulation and the production stages. To this end they must be as close as possible to production environments (i.e. real hardware, on the field deployments) while also keeping the traits of experimentation facilities (i.e. fault tolerance, ease of deployment, testing and data collection). This paper presents WiBed, a FOSS platform for WiFi testbeds based on OpenWRT Linux made to run oncommodity IEEE802.11 WiFi routers part of the Community-lab.net project, a global testbed for Community networks. WiBedhas been designed to support realistic low layer network exper-iments (according to the OSI model). This work recolects thedetails of the architecture, design and implementation of WiBed consolidated during its operation as a testbed. In addition to a set of routing experimentation results obtained during the Wireless Battlemesh v7 where WiBed was used as testbed platform.
Resumo:
Location information is becoming increasingly necessary as every new smartphone incorporates a GPS (Global Positioning System) which allows the development of various applications based on it. However, it is not possible to properly receive the GPS signal in indoor environments. For this reason, new indoor positioning systems are being developed.As indoors is a very challenging scenario, it is necessary to study the precision of the obtained location information in order to determine if these new positioning techniques are suitable for indoor positioning.
Resumo:
Wireless Sensor Networks (WSN) are formed by nodes with limited computational and power resources. WSNs are finding an increasing number of applications, both civilian and military, most of which require security for the sensed data being collected by the base station from remote sensor nodes. In addition, when many sensor nodes transmit to the base station, the implosion problem arises. Providing security measures and implosion-resistance in a resource-limited environment is a real challenge. This article reviews the aggregation strategies proposed in the literature to handle the bandwidth and security problems related to many-to-one transmission in WSNs. Recent contributions to secure lossless many-to-one communication developed by the authors in the context of several Spanish-funded projects are surveyed. Ongoing work on the secure lossy many-to-one communication is also sketched.
Resumo:
Electronic canopy characterization is an important issue in tree crop management. Ultrasonic and optical sensors are the most used for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To this purpose, a methodology has been designed to analyze sensor performance in relation to foliage ranging and to interferences with adjacent sensors when working simultaneously. Results show that the average error in distance measurement using the ultrasonic sensor in laboratory conditions is ±0.53 cm. However, the increase of variability in field conditions reduces the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations is ±5.11 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error is ±17.46 cm. When sensors are separated 60 cm, the average error is ±9.29 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in field conditions when sensors are 60 cm apart or more and could, therefore, be used in a system to estimate structural canopy parameters in precision horticulture.
Resumo:
Salmonella is distributed worldwide and is a pathogen of economic and public health importance. As a multi-host pathogen with a long environmental persistence, it is a suitable model for the study of wildlife-livestock interactions. In this work, we aim to explore the spill-over of Salmonella between free-ranging wild boar and livestock in a protected natural area in NE Spain and the presence of antimicrobial resistance. Salmonella prevalence, serotypes and diversity were compared between wild boars, sympatric cattle and wild boars from cattle-free areas. The effect of age, sex, cattle presence and cattle herd size on Salmonella probability of infection in wild boars was explored by means of Generalized Linear Models and a model selection based on the Akaike’s Information Criterion. Prevalence was higher in wild boars co-habiting with cattle (35.67%, CI 95% 28.19–43.70) than in wild boar from cattle-free areas (17.54%, CI 95% 8.74–29.91). Probability of a wild boar being a Salmonella carrier increased with cattle herd size but decreased with the host age. Serotypes Meleagridis, Anatum and Othmarschen were isolated concurrently from cattle and sympatric wild boars. Apart from serotypes shared with cattle, wild boars appear to have their own serotypes, which are also found in wild boars from cattle-free areas (Enteritidis, Mikawasima, 4:b:- and 35:r:z35). Serotype richness (diversity) was higher in wild boars co-habiting with cattle, but evenness was not altered by the introduction of serotypes from cattle. The finding of a S. Mbandaka strain resistant to sulfamethoxazole, streptomycin and chloramphenicol and a S. Enteritidis strain resistant to ciprofloxacin and nalidixic acid in wild boars is cause for public health concern.
Resumo:
This paper presents WiBed, a FOSS platform for WiFi testbeds based on OpenWRT Linux made to run on commodity IEEE802.11 WiFi routers part of the Community-lab.net project, a global testbed for Community networks. WiBed has been designed to support realistic low layer network experiments (according to the OSI model). This work recolects the details of the architecture, design and implementation of WiBed consolidated during its operation as a testbed.
Resumo:
Location information is becoming increasingly necessary as every new smartphone incorporates a GPS (Global Positioning System) which allows the development of various applications based on it. However, it is not possible to properly receive the GPS signal in indoor environments. For this reason, new indoor positioning systems are being developed. As indoors is a very challenging scenario, it is necessary to study the precision of the obtained location information in order to determine if these new positioning techniques are suitable for indoor positioning.