72 resultados para mesoscale atmospheric modeling
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Resumo:
We present a continuum formalism for modeling growing random networks under addition and deletion of nodes based on a differential mass balance equation. As examples of its applicability, we obtain new results on the degree distribution for growing networks with a uniform attachment and deletion of nodes, and complete some recent results on growing networks with preferential attachment and uniform removal
Resumo:
The longwave emission of planetary atmospheres that contain a condensable absorbing gas in the infrared (i.e., longwave), which is in equilibrium with its liquid phase at the surface, may exhibit an upper bound. Here we analyze the effect of the atmospheric absorption of sunlight on this radiation limit. We assume that the atmospheric absorption of infrared radiation is independent of wavelength except within the spectral width of the atmospheric window, where it is zero. The temperature profile in radiative equilibrium is obtained analytically as a function of the longwave optical thickness. For illustrative purposes, numerical values for the infrared atmospheric absorption (i.e., greenhouse effect) and the liquid vapor equilibrium curve of the condensable absorbing gas refer to water. Values for the atmospheric absorption of sunlight (i.e., antigreenhouse effect) take a wide range since our aim is to provide a qualitative view of their effects. We find that atmospheres with a transparent region in the infrared spectrum do not present an absolute upper bound on the infrared emission. This result may be also found in atmospheres opaque at all infrared wavelengths if the fraction of absorbed sunlight in the atmosphere increases with the longwave opacity
Resumo:
Background: Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results: This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC.Conclusion: This study proposes that variation at putative 8q24 cis-regulator(s) of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.
Resumo:
The paper presents a competence-based instructional design system and a way to provide a personalization of navigation in the course content. The navigation aid tool builds on the competence graph and the student model, which includes the elements of uncertainty in the assessment of students. An individualized navigation graph is constructed for each student, suggesting the competences the student is more prepared to study. We use fuzzy set theory for dealing with uncertainty. The marks of the assessment tests are transformed into linguistic terms and used for assigning values to linguistic variables. For each competence, the level of difficulty and the level of knowing its prerequisites are calculated based on the assessment marks. Using these linguistic variables and approximate reasoning (fuzzy IF-THEN rules), a crisp category is assigned to each competence regarding its level of recommendation.
Resumo:
The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.
Resumo:
This paper presents a two-factor (Vasicek-CIR) model of the term structure of interest rates and develops its pricing and empirical properties. We assume that default free discount bond prices are determined by the time to maturity and two factors, the long-term interest rate and the spread. Assuming a certain process for both factors, a general bond pricing equation is derived and a closed-form expression for bond prices is obtained. Empirical evidence of the model's performance in comparisson with a double Vasicek model is presented. The main conclusion is that the modeling of the volatility in the long-term rate process can help (in a large amount) to fit the observed data can improve - in a reasonable quantity - the prediction of the future movements in the medium- and long-term interest rates. However, for shorter maturities, it is shown that the pricing errors are, basically, negligible and it is not so clear which is the best model to be used.
Resumo:
The present paper makes progress in explaining the role of capital for inflation and output dynamics. We followWoodford (2003, Ch. 5) in assuming Calvo pricing combined with a convex capital adjustment cost at the firm level. Our main result is that capital accumulation affects inflation dynamics primarily through its impact on the marginal cost. This mechanism is much simpler than the one implied by the analysis in Woodford's text. The reason is that his analysis suffers from a conceptual mistake, as we show. The latter obscures the economic mechanism through which capital affects inflation and output dynamics in the Calvo model, as discussed in Woodford (2004).
Resumo:
The goal of this paper is to estimate time-varying covariance matrices.Since the covariance matrix of financial returns is known to changethrough time and is an essential ingredient in risk measurement, portfolioselection, and tests of asset pricing models, this is a very importantproblem in practice. Our model of choice is the Diagonal-Vech version ofthe Multivariate GARCH(1,1) model. The problem is that the estimation ofthe general Diagonal-Vech model model is numerically infeasible indimensions higher than 5. The common approach is to estimate more restrictive models which are tractable but may not conform to the data. Our contributionis to propose an alternative estimation method that is numerically feasible,produces positive semi-definite conditional covariance matrices, and doesnot impose unrealistic a priori restrictions. We provide an empiricalapplication in the context of international stock markets, comparing thenew estimator to a number of existing ones.
Resumo:
We describe some of the main features of the recent vintage macroeconomic models used for monetary policy evaluation. We point to some of the key differences with respect to the earlier generation ofmacro models, and highlight the insights for policy that these new frameworks have to offer. Our discussion emphasizes two key aspects of the new models: the significant role of expectations of future policy actions in the monetary transmission mechanism, and the importance for the central bank of tracking of the flexible price equilibrium values of the natural levels of output and the real interest rate. We argue that both features have important implications for the conduct of monetary policy.
Resumo:
Changes in the dynamics of sediment transport in a Mediterranean lake (sediment fluidization events) are linked to atmospheric circulations patterns (trough monthly precipitation). In the basins of Lake Banyoles, located in the northeast of Spain, water enters mainly through subterranean springs, and associated fluctuations in the vertical migration of sediment distribution (fluidization events) present episodic behavior as a result of episodic rainfall in the area. The initiation of the fluidization events takes place when the monthly rainfall is ∼2.7 times greater than the mean monthly rainfall of the rainiest months in the area, especially in spring (April and May), October, and December. The duration of these events is found to be well correlated with the accumulated rainfall of the preceding 10 months before the process initiation. The rainfall, in turn, is mainly associated with six atmospheric circulation patterns among the 19 fundamental circulations that emerged in an earlier study focused on significant rainfall days in Mediterranean Spain. Among them, accentuated surface lows over the northeast of Spain, general northeasterly winds by low pressure centered to the east of Balearic Islands and short baroclinic waves over the Iberian Peninsula, with easterly flows over the northeastern coast of Spain, are found the most relevant atmospheric circulations that drive heavy rainfall events
Resumo:
The 10 June 2000 event was the largest flash flood event that occurred in the Northeast of Spain in the late 20th century, both as regards its meteorological features and its considerable social impact. This paper focuses on analysis of the structures that produced the heavy rainfalls, especially from the point of view of meteorological radar. Due to the fact that this case is a good example of a Mediterranean flash flood event, a final objective of this paper is to undertake a description of the evolution of the rainfall structure that would be sufficiently clear to be understood at an interdisciplinary forum. Then, it could be useful not only to improve conceptual meteorological models, but also for application in downscaling models. The main precipitation structure was a Mesoscale Convective System (MCS) that crossed the region and that developed as a consequence of the merging of two previous squall lines. The paper analyses the main meteorological features that led to the development and triggering of the heavy rainfalls, with special emphasis on the features of this MCS, its life cycle and its dynamic features. To this end, 2-D and 3-D algorithms were applied to the imagery recorded over the complete life cycle of the structures, which lasted approximately 18 h. Mesoscale and synoptic information were also considered. Results show that it was an NS-MCS, quasi-stationary during its stage of maturity as a consequence of the formation of a convective train, the different displacement directions of the 2-D structures and the 3-D structures, including the propagation of new cells, and the slow movement of the convergence line associated with the Mediterranean mesoscale low.