17 resultados para lunar phases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topological order has proven a useful concept to describe quantum phase transitions which are not captured by the Ginzburg-Landau type of symmetry-breaking order. However, lacking a local order parameter, topological order is hard to detect. One way to detect it is via direct observation of anyonic properties of excitations which are usually discussed in the thermodynamic limit, but so far has not been realized in macroscopic quantum Hall samples. Here we consider a system of few interacting bosons subjected to the lowest Landau level by a gauge potential, and theoretically investigate vortex excitations in order to identify topological properties of different ground states. Our investigation demonstrates that even in surprisingly small systems anyonic properties are able to characterize the topological order. In addition, focusing on a system in the Laughlin state, we study the robustness of its anyonic behavior in the presence of tunable finite-range interactions acting as a perturbation. A clear signal of a transition to a different state is reflected by the system's anyonic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-dose carbon-ion-implanted Si samples have been analyzed by infrared spectroscopy, Raman scattering, and x-ray photoelectron spectroscopy (XPS) correlated with transmission electron microscopy. Samples were implanted at room temperature and 500°C with doses between 1017 and 1018 C+/cm2. Some of the samples were implanted at room temperature with the surface covered by a capping oxide layer. Implanting at room temperature leads to the formation of a surface carbon-rich amorphous layer, in addition to the buried implanted layer. The dependence of this layer on the capping oxide suggests this layer to be determined by carbon migration toward the surface, rather than surface contamination. Implanting at 500°C, no carbon-rich surface layer is observed and the SiC buried layer is formed by crystalline ßSiC precipitates aligned with the Si matrix. The concentration of SiC in this region as measured by XPS is higher than for the room-temperature implantation.