17 resultados para kidney tuberculosis
Resumo:
This study evaluated the performance of the Tuberculin Skin Test (TST) and Quantiferon-TB Gold in-Tube (QFT) and the possible association of factors which may modify their results in young children (0-6 years) with recent contact with an index tuberculosis case. Materials and Methods: A cross-sectional study including 135 children was conducted in Manaus, Amazonas-Brazil. The TST and QFT were performed and the tests results were analyzed in relation to the personal characteristics of the children studied and their relationship with the index case. Results: The rates of positivity were 34.8% (TST) and 26.7% (QFT), with 14.1% of indeterminations by the QFT. Concordance between tests was fair (Kappa = 0.35 P<0.001). Both the TST and QFT were associated with the intensity of exposure (Linear OR = 1.286, P = 0.005; Linear OR = 1.161, P = 0.035 respectively) with only the TST being associated with the time of exposure (Linear OR = 1.149, P = 0.009). The presence of intestinal helminths in the TST+ group was associated with negative QFT results (OR = 0.064, P = 0.049). In the TST- group lower levels of ferritin were associated with QFT+ results (Linear OR = 0.956, P = 0.036). Conclusions: Concordance between the TST and QFT was lower than expected. The factors associated with the discordant results were intestinal helminths, ferritin levels and exposure time to the index tuberculosis case. In TST+ group, helminths were associated with negative QFT results suggesting impaired cell-mediated immunity. The TST-&QFT+ group had a shorter exposure time and lower ferritin levels, suggesting that QFT is faster and ferritin may be a potential biomarker of early stages of tuberculosis infection.
Resumo:
The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN.