29 resultados para interstellar clouds
Resumo:
We consider all generalized soliton solutions of the Einstein-Rosen form in the cylindrical context. They are Petrov type-I solutions which describe solitonlike waves interacting with a line source placed on the symmetry axis. Some of the solutions develop a curvature singularity on the axis which is typical of massive line sources, whereas others just have the conical singularity revealing the presence of a static cosmic string. The analysis is based on the asymptotic behavior of the Riemann and metric tensors, the deficit angle, and a C-velocity associated to Thornes C-energy. The C-energy is found to be radiated along the null directions.
Resumo:
This case study deals with a rock face monitoring in urban areas using a Terrestrial Laser Scanner. The pilot study area is an almost vertical, fifty meter high cliff, on top of which the village of Castellfollit de la Roca is located. Rockfall activity is currently causing a retreat of the rock face, which may endanger the houses located at its edge. TLS datasets consist of high density 3-D point clouds acquired from five stations, nine times in a time span of 22 months (from March 2006 to January 2008). The change detection, i.e. rockfalls, was performed through a sequential comparison of datasets. Two types of mass movement were detected in the monitoring period: (a) detachment of single basaltic columns, with magnitudes below 1.5 m3 and (b) detachment of groups of columns, with magnitudes of 1.5 to 150 m3. Furthermore, the historical record revealed (c) the occurrence of slab failures with magnitudes higher than 150 m3. Displacements of a likely slab failure were measured, suggesting an apparent stationary stage. Even failures are clearly episodic, our results, together with the study of the historical record, enabled us to estimate a mean detachment of material from 46 to 91.5 m3 year¿1. The application of TLS considerably improved our understanding of rockfall phenomena in the study area.
Resumo:
A discussion is presented of daytime sky imaging and techniques that may be applied to the analysis of full-color sky images to infer cloud macrophysical properties. Descriptions of two different types of skyimaging systems developed by the authors are presented, one of which has been developed into a commercially available instrument. Retrievals of fractional sky cover from automated processing methods are compared to human retrievals, both from direct observations and visual analyses of sky images. Although some uncertainty exists in fractional sky cover retrievals from sky images, this uncertainty is no greater than that attached to human observations for the commercially available sky-imager retrievals. Thus, the application of automatic digital image processing techniques on sky images is a useful method to complement, or even replace, traditional human observations of sky cover and, potentially, cloud type. Additionally, the possibilities for inferring other cloud parameters such as cloud brokenness and solar obstruction further enhance the usefulness of sky imagers
Resumo:
This case study deals with a rock face monitoring in urban areas using a Terrestrial Laser Scanner. The pilot study area is an almost vertical, fifty meter high cliff, on top of which the village of Castellfollit de la Roca is located. Rockfall activity is currently causing a retreat of the rock face, which may endanger the houses located at its edge. TLS datasets consist of high density 3-D point clouds acquired from five stations, nine times in a time span of 22 months (from March 2006 to January 2008). The change detection, i.e. rockfalls, was performed through a sequential comparison of datasets. Two types of mass movement were detected in the monitoring period: (a) detachment of single basaltic columns, with magnitudes below 1.5 m3 and (b) detachment of groups of columns, with magnitudes of 1.5 to 150 m3. Furthermore, the historical record revealed (c) the occurrence of slab failures with magnitudes higher than 150 m3. Displacements of a likely slab failure were measured, suggesting an apparent stationary stage. Even failures are clearly episodic, our results, together with the study of the historical record, enabled us to estimate a mean detachment of material from 46 to 91.5 m3 year¿1. The application of TLS considerably improved our understanding of rockfall phenomena in the study area.
Resumo:
The geometric characterisation of tree orchards is a high-precision activity comprising the accurate measurement and knowledge of the geometry and structure of the trees. Different types of sensors can be used to perform this characterisation. In this work a terrestrial LIDAR sensor (SICK LMS200) whose emission source was a 905-nm pulsed laser diode was used. Given the known dimensions of the laser beam cross-section (with diameters ranging from 12 mm at the point of emission to 47.2 mm at a distance of 8 m), and the known dimensions of the elements that make up the crops under study (flowers, leaves, fruits, branches, trunks), it was anticipated that, for much of the time, the laser beam would only partially hit a foreground target/object, with the consequent problem of mixed pixels or edge effects. Understanding what happens in such situations was the principal objective of this work. With this in mind, a series of tests were set up to determine the geometry of the emitted beam and to determine the response of the sensor to different beam blockage scenarios. The main conclusions that were drawn from the results obtained were: (i) in a partial beam blockage scenario, the distance value given by the sensor depends more on the blocked radiant power than on the blocked surface area; (ii) there is an area that influences the measurements obtained that is dependent on the percentage of blockage and which ranges from 1.5 to 2.5 m with respect to the foreground target/object. If the laser beam impacts on a second target/object located within this range, this will affect the measurement given by the sensor. To interpret the information obtained from the point clouds provided by the LIDAR sensors, such as the volume occupied and the enclosing area, it is necessary to know the resolution and the process for obtaining this mesh of points and also to be aware of the problem associated with mixed pixels.
Resumo:
In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.
Resumo:
We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak-coupling region, which suggests that they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.
Resumo:
A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly solved including back-reaction effects, is investigated at both classical and quantum levels. This family contains the RST model as a special case, and it continuously interpolates between models having a flat (Rindler) geometry and a constant curvature metric with a nontrivial dilaton field. The processes of formation of black hole singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical aspects of these geometries are discussed, including the cosmological interpretation.
Resumo:
In recent years, massive protostars have turned out to be a possible population of high-energy emitters. Among the best candidates is IRAS 16547-4247, a protostar that presents a powerful outflow with clear signatures of interaction with its environment. This source has been revealed to be a potential high-energy source because it displays non-thermal radio emission of synchrotron origin, which is evidence of relativistic particles. To improve our understanding of IRAS 16547-4247 as a high-energy source, we analyzed XMM-Newton archival data and found that IRAS 16547-4247 is a hard X-ray source. We discuss these results in the context of a refined one-zone model and previous radio observations. From our study we find that it may be difficult to explain the X-ray emission as non-thermal radiation coming from the interaction region, but it might be produced by thermal Bremsstrahlung (plus photo-electric absorption) by a fast shock at the jet end. In the high-energy range, the source might be detectable by the present generation of Cherenkov telescopes, and may eventually be detected by Fermi in the GeV range.
Resumo:
Context. There are a number of very high energy sources in the Galaxy that remain unidentified. Multi-wavelength and variability studies, and catalogue searches, are powerful tools to identify the physical counterpart, given the uncertainty in the source location and extension. Aims. This work carries out a thorough multi-wavelength study of the unidentified, very high energy source HESS J1858+020 and its environs. Methods. We have performed Giant Metrewave Radio Telescope observations at 610 MHz and 1.4 GHz to obtain a deep, low-frequency radio image of the region surrounding HESS J1858+020. We analysed archival radio, infrared, and X-ray data as well. This observational information, combined with molecular data, catalogue sources, and a nearby Fermi gamma-ray detection of unidentified origin, are combined to explore possible counterparts to the very high energy source. Results. We provide with a deep radio image of a supernova remnant that might be related to the GeV and TeV emission in the region. We confirm the presence of an H ii region next to the supernova remnant and coincident with molecular emission. A potential region of star formation is also identified. We identify several radio and X-ray sources in the surroundings. Some of these sources are known planetary nebulae, whereas others may be non-thermal extended emitters and embedded young stellar objects. Three old, background Galactic pulsars also neighbour HESS J1858+020 along the line of sight. Conclusions. The region surrounding HESS J1858+020 is rich in molecular structures and non-thermal objects that may potentially be linked to this unidentified very high energy source. In particular, a supernova remnant interacting with nearby molecular clouds may be a good candidate, but a star forming region, or a non-thermal radio source of yet unclear nature, may also be behind the gamma-ray source. The neighbouring pulsars, despite being old and distant, cannot be discarded as candidates. Further observational studies are needed, however, to narrow the search for a counterpart to the HESS source.
Resumo:
Massive protostars have associated bipolar outflows with velocities of hundreds of km s-1. Such outflows can produce strong shocks when they interact with the ambient medium leading to regions of nonthermal radio emission. Aims. We aim at exploring under which conditions relativistic particles are accelerated at the terminal shocks of the protostellar jets and whether they can produce significant gamma-ray emission. Methods. We estimate the conditions necessary for particle acceleration up to very high energies and gamma-ray production in the nonthermal hot spots of jets associated with massive protostars embedded in dense molecular clouds. Results. We show that relativistic bremsstrahlung and proton-proton collisions can make molecular clouds with massive young stellar objects detectable by the Fermi satellite at MeV-GeV energies and by Cherenkov telescope arrays in the GeV-TeV range. Conclusions. Gamma-ray astronomy can be used to probe the physical conditions in star-forming regions and particle acceleration processes in the complex environment of massive molecular clouds.
Resumo:
Mi trabajo versa sobre la obra de O. Messiaen "Des Canyons aux etoiles" (De los cañones a las estrellas), y en particular de uno de los movimientos de la obra: "Appel Interestellaire" -N.VI- (Llamada Interestelar) -para trompa sola-. Se estructura en dos partes. La primera se centra en su contexto histórico -como, cuando y para quien fue compuesta-; análisis formal, armónico, melódico, rítmico; y aspectos estéticos. La segunda parte está vinculada con la interpretación de la obra. Se realiza un análisis para la interpretación -técnica de la trompa, efectos sonoros, timbres-; se hace una comparación entre la interpretación de 2 diferentes trompistas, y por último, aporto mi propuesta de interpretación. El trabajo se cierra con una conclusión, bibliografía, y un extracto con anexos (esquema, partitura y datos o imágenes de interés).
Resumo:
Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database