22 resultados para human dental pulp cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, wedescribe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptidesKKLFKKILKYL-NH2 (BP100) and KKLfKKILKYL-NH2 (BP143) attached to the carbohydrate template cyclodithioerythritol(cDTE) or α-D-galactopyranoside (Galp). The synthesis involved the preparation of the corresponding peptide aldehyde followedby coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtainedin high purities (90–98%) and in good yields (42–64%). These compounds were tested against plant and human pathogenic bacteriaand screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteriaanalyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively,were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest thatpreassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of theactivity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassemblyis critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A change in paradigm is needed in the prevention of toxic effects on the nervous system, moving from its present reliance solely on data from animal testing to a prediction model mostly based on in vitro toxicity testing and in silico modeling. According to the report published by the National Research Council (NRC) of the US National Academies of Science, high-throughput in vitro tests will provide evidence for alterations in"toxicity pathways" as the best possible method of large scale toxicity prediction. The challenges to implement this proposal are enormous, and provide much room for debate. While many efforts address the technical aspects of implementing the vision, many questions around it need also to be addressed. Is the overall strategy the only one to be pursued? How can we move from current to future paradigms? Will we ever be able to reliably model for chronic and developmental neurotoxicity in vitro? This paper summarizes four presentations from a symposium held at the International Neurotoxicology Conference held in Xi"an, China, in June 2011. A. Li reviewed the current guidelines for neurotoxicity and developmental neurotoxicity testing, and discussed the major challenges existing to realize the NCR vision for toxicity testing. J. Llorens reviewed the biology of mammalian toxic avoidance in view of present knowledge on the physiology and molecular biology of the chemical senses, taste and smell. This background information supports the hypothesis that relating in vivo toxicity to chemical epitope descriptors that mimic the chemical encoding performed by the olfactory system may provide a way to the long term future of complete in silico toxicity prediction. S. Ceccatelli reviewed the implementation of rodent and human neural stem cells (NSCs) as models for in vitro toxicity testing that measures parameters such as cell proliferation, differentiation and migration. These appear to be sensitive endpoints that can identify substances with developmental neurotoxic potential. C. Sun ol reviewed the use of primary neuronal cultures in testing for neurotoxicity of environmental pollutants, including the study of the effects of persistent exposures and/or in differentiating cells, which allow recording of effects that can be extrapolated to human developmental neurotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resum de l"any científic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To compare the clinical anesthetic efficacy of 0.5% bupivacaine and 4% articaine (both with 1:200.000 adrenaline) for anterior maxillary infiltration in healthy volunteers. Material and methods: A triple-blind split-mouth randomized clinical trial was carried out in 20 volunteers. A supraperiosteal buccal injection of 0.9 ml of either solution at the apex of the lateral incisor was done in 2 appointments separated 2 weeks apart. The following outcome variables were measured: latency time, anesthetic efficacy (dental pulp, keratinized gingiva, alveolar mucosa and upper lip mucosa and tissue) and the duration of anesthetic effect. Hemodynamic parameters were monitored during the procedure. Results: Latency time recorded was similar for both anesthetic solutions (p>0.05). No statistically significant differences were found in terms of anesthetic efficacy for dental pulp, keratinized gingiva or alveolar mucosa. Articaine had a significant higher proportion of successful anesthesia at 10 minutes after infiltration in lip mucosa and lip skin (p=0.039). The duration of anesthesia was 336 minutes for bupivacaine and 167 minutes for articaine. (p<0.001). No significant hemodynamic alterations were noted during the procedure. Conclusions: Articaine and bupivacaine exhibited similar anesthetic efficacy for maxillary infiltrations. The duration of anesthesia was longer with the bupivacaine solution, but lip anesthesia was better with articaine

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na₊ channel alpha subunit (Naᵥ1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or I890T Naᵥ1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Naᵥ1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from -52.0 ± 6.5 pA/pF, n=15 to 35.9 ± 3.4 pA/pF, n = 22, at -20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V½ =-32.0 ± 0.3 mV, n = 18, and -27.3 ± 0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G1 phase. Aberrant expression of CDK4 and CDK6 is a hall- mark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM is a potent specific inhibitor of CDK4 and CDK6 in HCT116 human colon adenocarcinoma cells, inhibiting retinoblastoma protein (pRb) phosphorylation and inducing cell cycle arrest in the G1 phase. The metabolic effects of calcein AM (the calcein acetoxymethyl-ester) on HCT116 cells were also evaluated and the flux between the oxidative and non-oxidative branches of the pentose phos-phate pathway was significantly altered. To elucidate whe-ther these metabolic changes were due to the inhibition of CDK4 and CDK6, we also characterized the metabolic profile of a CDK4, CDK6 and CDK2 triple knockout of mouse embryonic fibroblasts. The results show that the metabolic profile associated with the depletion of CDK4, CDK6 and CDK2 coincides with the metabolic changes induced by calcein AM on HCT116 cells, thus confirming that the inhibition of CDK4 and CDK6 disrupts the balance between the oxidative and non-oxidative branches of the pentose phosphate pathway. Taken together, these results indicate that low doses of calcein can halt cell division and kill tumor cells. Thus, selective inhibition of CDK4 and CDK6 may be of greater pharmacological interest, since inhibitors of these kinases affect both cell cycle progression and the robust metabolic profile of tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-typable Haemophilus influenzae (NTHi) is a Gram negative pathogen that causes acute respiratory infections and is associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules, and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA−, lic2C+, ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to serum mediated killing and enhanced adherence to human respiratory epithelial cells.