80 resultados para generalized second order conditions
Resumo:
We study free second-order processes driven by dichotomous noise. We obtain an exact differential equation for the marginal density p(x,t) of the position. It is also found that both the velocity ¿(t) and the position X(t) are Gaussian random variables for large t.
Resumo:
This paper deals with the goodness of the Gaussian assumption when designing second-order blind estimationmethods in the context of digital communications. The low- andhigh-signal-to-noise ratio (SNR) asymptotic performance of the maximum likelihood estimator—derived assuming Gaussiantransmitted symbols—is compared with the performance of the optimal second-order estimator, which exploits the actualdistribution of the discrete constellation. The asymptotic study concludes that the Gaussian assumption leads to the optimalsecond-order solution if the SNR is very low or if the symbols belong to a multilevel constellation such as quadrature-amplitudemodulation (QAM) or amplitude-phase-shift keying (APSK). On the other hand, the Gaussian assumption can yield importantlosses at high SNR if the transmitted symbols are drawn from a constant modulus constellation such as phase-shift keying (PSK)or continuous-phase modulations (CPM). These conclusions are illustrated for the problem of direction-of-arrival (DOA) estimation of multiple digitally-modulated signals.
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.
Resumo:
We consider linear optimization over a nonempty convex semi-algebraic feasible region F. Semidefinite programming is an example. If F is compact, then for almost every linear objective there is a unique optimal solution, lying on a unique \active" manifold, around which F is \partly smooth", and the second-order sufficient conditions hold. Perturbing the objective results in smooth variation of the optimal solution. The active manifold consists, locally, of these perturbed optimal solutions; it is independent of the representation of F, and is eventually identified by a variety of iterative algorithms such as proximal and projected gradient schemes. These results extend to unbounded sets F.
Resumo:
Given a Lagrangian system depending on the position derivatives of any order, and assuming that certain conditions are satisfied, a second-order differential system is obtained such that its solutions also satisfy the Euler equations derived from the original Lagrangian. A generalization of the singular Lagrangian formalism permits a reduction of order keeping the canonical formalism in sight. Finally, the general results obtained in the first part of the paper are applied to Wheeler-Feynman electrodynamics for two charged point particles up to order 1/c4.
Resumo:
We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations.
Resumo:
A coercive estimate for a solution of a degenerate second order di fferential equation is installed, and its applications to spectral problems for the corresponding dif ferential operator is demonstrated. The suffi cient conditions for existence of the solutions of one class of the nonlinear second order diff erential equations on the real axis are obtained.
Resumo:
Aquest projecte es centra principalment en el detector no coherent d’un GPS. Per tal de caracteritzar el procés de detecció d’un receptor, es necessita conèixer l’estadística implicada. Pel cas dels detectors no coherents convencionals, l’estadística de segon ordre intervé plenament. Les prestacions que ens dóna l’estadística de segon ordre, plasmada en la ROC, són prou bons tot i que en diferents situacions poden no ser els millors. Aquest projecte intenta reproduir el procés de detecció mitjançant l’estadística de primer ordre com a alternativa a la ja coneguda i implementada estadística de segon ordre. Per tal d’aconseguir-ho, s’usen expressions basades en el Teorema Central del Límit i de les sèries Edgeworth com a bones aproximacions. Finalment, tant l’estadística convencional com l’estadística proposada són comparades, en termes de la ROC, per tal de determinar quin detector no coherent ofereix millor prestacions en cada situació.
Resumo:
A procedure based on quantum molecular similarity measures (QMSM) has been used to compare electron densities obtained from conventional ab initio and density functional methodologies at their respective optimized geometries. This method has been applied to a series of small molecules which have experimentally known properties and molecular bonds of diverse degrees of ionicity and covalency. Results show that in most cases the electron densities obtained from density functional methodologies are of a similar quality than post-Hartree-Fock generalized densities. For molecules where Hartree-Fock methodology yields erroneous results, the density functional methodology is shown to yield usually more accurate densities than those provided by the second order Møller-Plesset perturbation theory
Resumo:
Structural equation models are widely used in economic, socialand behavioral studies to analyze linear interrelationships amongvariables, some of which may be unobservable or subject to measurementerror. Alternative estimation methods that exploit different distributionalassumptions are now available. The present paper deals with issues ofasymptotic statistical inferences, such as the evaluation of standarderrors of estimates and chi--square goodness--of--fit statistics,in the general context of mean and covariance structures. The emphasisis on drawing correct statistical inferences regardless of thedistribution of the data and the method of estimation employed. A(distribution--free) consistent estimate of $\Gamma$, the matrix ofasymptotic variances of the vector of sample second--order moments,will be used to compute robust standard errors and a robust chi--squaregoodness--of--fit squares. Simple modifications of the usual estimateof $\Gamma$ will also permit correct inferences in the case of multi--stage complex samples. We will also discuss the conditions under which,regardless of the distribution of the data, one can rely on the usual(non--robust) inferential statistics. Finally, a multivariate regressionmodel with errors--in--variables will be used to illustrate, by meansof simulated data, various theoretical aspects of the paper.
Resumo:
[spa] Se presenta el operador de media ponderada ordenada generalizada lingüística de 2 tuplas inducida (2-TILGOWA). Es un nuevo operador de agregación que extiende los anteriores modelos a través de utilizar medias generalizadas, variables de ordenación inducidas e información lingüística representada mediante el modelo de las 2 tuplas lingüísticas. Su principal ventaja se encuentra en la posibilidad de incluir a un gran número de operadores de agregación lingüísticos como casos particulares. Por eso, el análisis puede ser visto desde diferentes perspectivas de forma que se obtiene una visión más completa del problema considerado y seleccionar la alternativa que parece estar en mayor concordancia con nuestros intereses o creencias. A continuación se desarrolla una generalización mayor a través de utilizar medias cuasi-aritméticas, obteniéndose el operador Quasi-2-TILOWA. El trabajo finaliza analizando la aplicabilidad del nuevo modelo en un problema de toma de decisiones sobre gestión de la producción.
Resumo:
[spa] Se presenta el operador de media ponderada ordenada generalizada lingüística de 2 tuplas inducida (2-TILGOWA). Es un nuevo operador de agregación que extiende los anteriores modelos a través de utilizar medias generalizadas, variables de ordenación inducidas e información lingüística representada mediante el modelo de las 2 tuplas lingüísticas. Su principal ventaja se encuentra en la posibilidad de incluir a un gran número de operadores de agregación lingüísticos como casos particulares. Por eso, el análisis puede ser visto desde diferentes perspectivas de forma que se obtiene una visión más completa del problema considerado y seleccionar la alternativa que parece estar en mayor concordancia con nuestros intereses o creencias. A continuación se desarrolla una generalización mayor a través de utilizar medias cuasi-aritméticas, obteniéndose el operador Quasi-2-TILOWA. El trabajo finaliza analizando la aplicabilidad del nuevo modelo en un problema de toma de decisiones sobre gestión de la producción.
Resumo:
Temperature and velocity correlation functions in a fluid subjected to conditions creating both a temperature and a velocity gradient are computed up to second order in the gradients. Temperature and velocity fluctuations are coupled due to convection and viscous heating. When the viscosity goes to infinity one gets the temperature correlation function for a solid under a temperature gradient, which contains a long-ranged contribution, quadratic in the temperature gradient. The velocity correlation function also exhibits long-range behavior. In a particular case its equilibrium term is diagonal whereas the nonequilibrium correction contains nondiagonal terms.
Resumo:
We study general models of holographic superconductivity parametrized by four arbitrary functions of a neutral scalar field of the bulk theory. The models can accommodate several features of real superconductors, like arbitrary critical temperatures and critical exponents in a certain range, and perhaps impurities or boundary or thickness effects. We find analytical expressions for the critical exponents of the general model and show that they satisfy the Rushbrooke identity. An important subclass of models exhibit second order phase transitions. A study of the specific heat shows that general models can also describe holographic superconductors undergoing first, second and third (or higher) order phase transitions. We discuss how small deformations of the HHH model can lead to the appearance of resonance peaks in the conductivity, which increase in number and become narrower as the temperature is gradually decreased, without the need for tuning mass of the scalar to be close to the Breitenlohner-Freedman bound. Finally, we investigate the inclusion of a generalized ¿theta term¿ producing Hall effect without magnetic field.