17 resultados para division of responsibilities


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper seeks to address the problem of the empirical identification of housing market segmentation,once we assume that submarkets exist. The typical difficulty in identifying housing submarkets when dealing with many locations is the vast number of potential solutions and, in such cases, the use of the Chow test for hedonic functions is not a practical solution. Here, we solve this problem by undertaking an identification process with a heuristic for spatially constrained clustering, the"Housing Submarket Identifier" (HouSI). The solution is applied to the housing market in the city of Barcelona (Spain), where we estimate a hedonic model for fifty thousand dwellings aggregated into ten groups. In order to determine the utility of the procedure we seek to verify whether the final solution provided by the heuristic is comparable with the division of the city into ten administrative districts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The most suitable method for estimation of size diversity is investigated. Size diversity is computed on the basis of the Shannon diversity expression adapted for continuous variables, such as size. It takes the form of an integral involving the probability density function (pdf) of the size of the individuals. Different approaches for the estimation of pdf are compared: parametric methods, assuming that data come from a determinate family of pdfs, and nonparametric methods, where pdf is estimated using some kind of local evaluation. Exponential, generalized Pareto, normal, and log-normal distributions have been used to generate simulated samples using estimated parameters from real samples. Nonparametric methods include discrete computation of data histograms based on size intervals and continuous kernel estimation of pdf. Kernel approach gives accurate estimation of size diversity, whilst parametric methods are only useful when the reference distribution have similar shape to the real one. Special attention is given for data standardization. The division of data by the sample geometric mean is proposedas the most suitable standardization method, which shows additional advantages: the same size diversity value is obtained when using original size or log-transformed data, and size measurements with different dimensionality (longitudes, areas, volumes or biomasses) may be immediately compared with the simple addition of ln k where kis the dimensionality (1, 2, or 3, respectively). Thus, the kernel estimation, after data standardization by division of sample geometric mean, arises as the most reliable and generalizable method of size diversity evaluation