36 resultados para dimensionality reduction
Resumo:
In this paper we propose a parsimonious regime-switching approach to model the correlations between assets, the threshold conditional correlation (TCC) model. This method allows the dynamics of the correlations to change from one state (or regime) to another as a function of observable transition variables. Our model is similar in spirit to Silvennoinen and Teräsvirta (2009) and Pelletier (2006) but with the appealing feature that it does not suffer from the course of dimensionality. In particular, estimation of the parameters of the TCC involves a simple grid search procedure. In addition, it is easy to guarantee a positive definite correlation matrix because the TCC estimator is given by the sample correlation matrix, which is positive definite by construction. The methodology is illustrated by evaluating the behaviour of international equities, govenrment bonds and major exchange rates, first separately and then jointly. We also test and allow for different parts in the correlation matrix to be governed by different transition variables. For this, we estimate a multi-threshold TCC specification. Further, we evaluate the economic performance of the TCC model against a constant conditional correlation (CCC) estimator using a Diebold-Mariano type test. We conclude that threshold correlation modelling gives rise to a significant reduction in portfolio´s variance.
Resumo:
The objective of traffic engineering is to optimize network resource utilization. Although several works have been published about minimizing network resource utilization, few works have focused on LSR (label switched router) label space. This paper proposes an algorithm that takes advantage of the MPLS label stack features in order to reduce the number of labels used in LSPs. Some tunnelling methods and their MPLS implementation drawbacks are also discussed. The described algorithm sets up NHLFE (next hop label forwarding entry) tables in each LSR, creating asymmetric tunnels when possible. Experimental results show that the described algorithm achieves a great reduction factor in the label space. The presented works apply for both types of connections: P2MP (point-to-multipoint) and P2P (point-to-point)
Resumo:
The aim of traffic engineering is to optimise network resource utilization. Although several works on minimizing network resource utilization have been published, few works have focused on LSR label space. This paper proposes an algorithm that uses MPLS label stack features in order to reduce the number of labels used in LSPs forwarding. Some tunnelling methods and their MPLS implementation drawbacks are also discussed. The algorithm described sets up the NHLFE tables in each LSR, creating asymmetric tunnels when possible. Experimental results show that the algorithm achieves a large reduction factor in the label space. The work presented here applies for both types of connections: P2MP and P2P
Resumo:
This short paper addresses the problem of designing a QFT (quantitative feedback theory) based controllers for the vibration reduction in a 6-story building structure equipped with shear-mode magnetorheological dampers. A new methodology is proposed for characterizing the nonlinear hysteretic behavior of the MR damper through the uncertainty template in the Nichols chart. The design procedure for QFT control design is briefly presented
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
We develop a general error analysis framework for the Monte Carlo simulationof densities for functionals in Wiener space. We also study variancereduction methods with the help of Malliavin derivatives. For this, wegive some general heuristic principles which are applied to diffusionprocesses. A comparison with kernel density estimates is made.
Resumo:
The results of a crystal structure refinement of an anisotropic grandite garnet specimen with composition Gro36-4 And63-6 are given. The structure obtained has orthorrombic symmetry (space group Fddd) and is compared with similar results obtained by other authors. In all cases the reduction of symmetry is due to the ordering of Fe3+ and Al in octahedral sites. Non cubic structures of grandites are discussed in connection with optical, morphological an grou-th features of these minerals.
Resumo:
In this paper we examine in detail the implementation, with its associated difficulties, of the Killing conditions and gauge fixing into the variational principle formulation of Bianchi-type cosmologies. We address problems raised in the literature concerning the Lagrangian and the Hamiltonian formulations: We prove their equivalence, make clear the role of the homogeneity preserving diffeomorphisms in the phase space approach, and show that the number of physical degrees of freedom is the same in the Hamiltonian and Lagrangian formulations. Residual gauge transformations play an important role in our approach, and we suggest that Poincaré transformations for special relativistic systems can be understood as residual gauge transformations. In the Appendixes, we give the general computation of the equations of motion and the Lagrangian for any Bianchi-type vacuum metric and for spatially homogeneous Maxwell fields in a nondynamical background (with zero currents). We also illustrate our counting of degrees of freedom in an appendix.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
Resumo:
We report the study of the influence of optical aberrations in a joint-transform correlator: The wave aberration of the optical system is computed from data obtained by ray tracing. Three situations are explored: We consider the aberration only in the first diffraction stage (generation of power spectrum), then only in the second (transformation of the power spectrum into correlation), and finally in both stages simultaneously. The results show that the quality of the correlation is determined mostly by the aberrations of the first diffraction stage and that we can optimize the setup by moving the cameras along the optical axis to a suitable position. The good agreement between the predicted data and the experimental results shows that the method explains well the behavior of optical diffraction systems when aberrations are taken into account.
Resumo:
Given a Lagrangian system depending on the position derivatives of any order, and assuming that certain conditions are satisfied, a second-order differential system is obtained such that its solutions also satisfy the Euler equations derived from the original Lagrangian. A generalization of the singular Lagrangian formalism permits a reduction of order keeping the canonical formalism in sight. Finally, the general results obtained in the first part of the paper are applied to Wheeler-Feynman electrodynamics for two charged point particles up to order 1/c4.
Resumo:
Marked changes in the content of protein in the diet affects the rat"s pattern of growth, but there is not any data on the effects to moderate changes. Here we used a genetically obese rat strain (Zucker) to examine the metabolic modifications induced to moderate changes in the content of protein of diets, doubling (high-protein (HP): 30%) or halving (low-protein (LP): 8%) the content of protein of reference diet (RD: 16%). Nitrogen, energy balances, and amino acid levels were determined in lean (L) and obese (O) animals after 30 days on each diet. Lean HP (LHP) animals showed higher energy efficiency and amino acid catabolism but maintained similar amino acid accrual rates to the lean RD (LRD) group. Conversely, the lean LP (LLP) group showed a lower growth rate, which was compensated by a relative increase in fat mass. Furthermore, these animals showed greater efficiency accruing amino acids. Obesity increased amino acid catabolism as a result of massive amino acid intake; however, obese rats maintained protein accretion rates, which, in the OHP group, implied a normalization of energy efficiency. Nonetheless, the obese OLP group showed the same protein accretion pattern as in lean animals (LLP). In the base of our data, concluded that the Zucker rats accommodate their metabolism to support moderates increases in the content of protein in the diet, but do not adjust in the same way to a 50% decrease in content of protein, as shown by an index of growth reduced, both in lean and obese rats.
Resumo:
The problem of synthetic aperture radar interferometric phase noise reduction is addressed. A new technique based on discrete wavelet transforms is presented. This technique guarantees high resolution phase estimation without using phase image segmentation. Areas containing only noise are hardly processed. Tests with synthetic and real interferograms are reported.
Resumo:
Background: At present, it is complicated to use screening trials to determine the optimal age intervals and periodicities of breast cancer early detection. Mathematical models are an alternative that has been widely used. The aim of this study was to estimate the effect of different breast cancer early detection strategies in Catalonia (Spain), in terms of breast cancer mortality reduction (MR) and years of life gained (YLG), using the stochastic models developed by Lee and Zelen (LZ). Methods: We used the LZ model to estimate the cumulative probability of death for a cohort exposed to different screening strategies after T years of follow-up. We also obtained the cumulative probability of death for a cohort with no screening. These probabilities were used to estimate the possible breast cancer MR and YLG by age, period and cohort of birth. The inputs of the model were: incidence of, mortality from and survival after breast cancer, mortality from other causes, distribution of breast cancer stages at diagnosis and sensitivity of mammography. The outputs were relative breast cancer MR and YLG. Results: Relative breast cancer MR varied from 20% for biennial exams in the 50 to 69 age interval to 30% for annual exams in the 40 to 74 age interval. When strategies differ in periodicity but not in the age interval of exams, biennial screening achieved almost 80% of the annual screening MR. In contrast to MR, the effect on YLG of extending screening from 69 to 74 years of age was smaller than the effect of extending the screening from 50 to 45 or 40 years. Conclusion: In this study we have obtained a measure of the effect of breast cancer screening in terms of mortality and years of life gained. The Lee and Zelen mathematical models have been very useful for assessing the impact of different modalities of early detection on MR and YLG in Catalonia (Spain).