37 resultados para cosmologia,quintessenza


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We obtain the photon spectrum induced by a cosmic background of unstable neutrinos. We study the spectrum in a variety of cosmological scenarios and also we allow for the neutrinos having a momentum distribution (only a critical matter-dominated universe and neutrinos at rest have been considered until now). Our results can be helpful when extracting bounds on neutrino electric and magnetic moments from cosmic photon background observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"static" instanton, representing pair creation of critical bubbles¿a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such a static instanton may be well suited for the ¿saltatory¿ relaxation scenario proposed by Feng et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A broad class of dark energy models, which have been proposed in attempts at solving the cosmological constant problems, predict a late time variation of the equation of state with redshift. The variation occurs as a scalar field picks up speed on its way to negative values of the potential. The negative potential energy eventually turns the expansion into contraction and the local universe undergoes a big crunch. In this paper we show that cross-correlations of the cosmic microwave background anisotropy and matter distribution, in combination with other cosmological data, can be used to forecast the imminence of such cosmic doomsday.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spatially flat Robertson-Walker spacetime driven by a cosmological constant is nonconformally coupled to a massless scalar field. The equations of semiclassical gravity are explicitly solved for this case, and a self-consistent de Sitter solution associated with the Bunch-Davies vacuum state is found (the effect of the quantum field is to shift slightly the effective cosmological constant). Furthermore, it is shown that the corrected de Sitter spacetime is stable under spatially isotropic perturbations of the metric and the quantum state. These results are independent of the free renormalization parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the solution published in the paper by Senovilla [Phys. Rev. Lett. 64, 2219 (1990)] is geodesically complete and singularity-free. We also prove that the solution satisfies the stronger energy and causality conditions, such as global hyperbolicity, the strong energy condition, causal symmetry, and causal stability. A detailed discussion about which assumptions in the singularity theorems are not satisfied is performed, and we show explicitly that the solution is in accordance with those theorems. A brief discussion of the results is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the Darmois junction conditions, we give the necessary and sufficient conditions for the matching of a general spherically symmetric metric to a Vaidya radiating solution. We present also these conditions in terms of the physical quantities of the corresponding energy-momentum tensors. The physical interpretation of the results and their possible applications are studied, and we also perform a detailed analysis of previous work on the subject by other authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We solve Einsteins equations in an n-dimensional vacuum with the simplest ansatz leading to a Friedmann-Robertson-Walker (FRW) four-dimensional space time. We show that the FRW model must be of radiation. For the open models the extra dimensions contract as a result of cosmological evolution. For flat and closed models they contract only when there is one extra dimension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Einstein equations coupled with a cloud of geometric strings for a five-dimensional Bianchi type-I cosmological model are studied. The cosmological consequences of having strings along the fifth dimension are examined. Particular solutions with dynamical compactifications of the extra dimensions and compatibility with expanding three-dimensional spaces are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle production in a cosmological spacetime with extra dimensions is discussed. A five-dimensional cosmological model with a three-dimensional space expanding isotropically like in a radiative Friedmann-Robertson-Walker model and an internal space contracting to a constant small size is considered. The parameters of the model are adjusted so that time variations in internal space are compatible with present limits on time variations of the fundamental constants. By requiring that the energy density of the particles produced be less than the critical density at the radiation era we set restrictions on two more parameters: namely, the initial time of application of the semiclassical approach and the relative sizes between the internal space and the horizon of the ordinary Universe at this time. Whereas the production of massless particles allows a large range of variation to these parameters, the production of massive particles sets severe constraints on them, since, if they are overproduced, their energy density might very soon dominate the Universe and make cosmological dimensional reduction by extradimensional contraction unlikely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a simple geometrical prescription for coupling a test quantum scalar field to an "inflaton" (classical scalar field) in the presence of gravity. When the inflaton stems from the compactification of a Kaluza-Klein theory, the prescription leaves no arbitrariness and amounts to a dimensional reduction of the Klein-Gordon equation. We discuss the possible relevance of this coupling to "reheating" in inflationary cosmologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in-in effective action formalism is used to derive the semiclassical correction to Einsteins equations due to a massless scalar quantum field conformally coupled to small gravitational perturbations in spatially flat cosmological models. The vacuum expectation value of the stress tensor of the quantum field is directly derived from the renormalized in-in effective action. The usual in-out effective action is also discussed and it is used to compute the probability of particle creation. As one application, the stress tensor of a scalar field around a static cosmic string is derived and the back-reaction effect on the gravitational field of the string is discussed.