20 resultados para conventional electrocardiography
Resumo:
Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.
Resumo:
This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at the end of the batch experiment (8 d) with the exception of Ifosfamide and Tamoxifen. These two recalcitrant compounds, together with Cyclophosphamide, were selected for further studies to test their degradability by T. versicolor under optimal growth conditions. Cyclophosphamide and Ifosfamide were inalterable during batch experiments both at high and low concentration, whereas Tamoxifen exhibited a decrease in its concentration along the treatment. Two positional isomers of a hydroxylated form of Tamoxifen were identified during this experiment using a high resolution mass spectrometry based on ultra-high performance chromatography coupled to an Orbitrap detector (LTQ-Velos Orbitrap). Finally the identified transformation products of Tamoxifen were monitored in the bioreactor run with real hospital wastewater
Resumo:
The proposal to work on this final project came after several discussions held with Dr. Elzbieta Malinowski Gadja, who in 2008 published the book entitled Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications (Data-Centric Systems and Applications). The project was carried out under the technical supervision of Dr. Malinowski and the direct beneficiary was the University of Costa Rica (UCR) where Dr. Malinowski is a professor at the Department of Computer Science and Informatics. The purpose of this project was twofold: First, to translate chapter III of said book with the intention of generating educational material for the use of the UCR and, second, to venture in the field of technical translation related to data warehouse. For the first component, the goal was to generate a final product that would eventually serve as an educational tool for the post-graduate courses of the UCR. For the second component, this project allowed me to acquire new skills and put into practice techniques that have helped me not only to perfom better in my current job as an Assistant Translator of the Inter-American BAnk (IDB), but also to use them in similar projects. The process was lenggthy and required torough research and constant communication with the author. The investigation focused on the search of terms and definitions to prepare the glossary, which was the basis to start the translation project. The translation process itself was carried out by phases, so that comments and corrections by the author could be taken into account in subsequent stages. Later, based on the glossary and the translated text, illustrations had been created in the Visio software were translated. In addition to the technical revision by the author, professor Carme Mangiron was in charge of revising the non-technical text. The result was a high-quality document that is currently used as reference and study material by the Department of Computer Science and Informatics of Costa Rica.
Resumo:
The high sensitivity and excellent timing accuracy of Geiger mode avalanche photodiodes makes them ideal sensors as pixel detectors for particle tracking in high energy physics experiments to be performed in future linear colliders. Nevertheless, it is well known that these sensors suffer from dark counts and afterpulsing noise, which induce false hits (indistinguishable from event detection) as well as an increase of the necessary area of the readout system. In this work, we present a comparison between APDs fabricated in a high voltage 0.35 µm and a high integration 0.13 µm commercially available CMOS technologies that has been performed to determine which of them best fits the particle collider requirements. In addition, a readout circuit that allows low noise operation is introduced. Experimental characterization of the proposed pixel is also presented in this work.
Resumo:
Avalanche photodiodes operated in the Geiger mode present very high intrinsic gain and fast time response, which make the sensor an ideal option for those applications in which detectors with high sensitivity and velocity are required. Moreover, they are compatible with conventional CMOS technologies, allowing sensor and front-end electronics integration within the pixel cell. Despite these excellent qualities, the photodiode suffers from high intrinsic noise, which degrades the performance of the detector and increases the memory area to store the total amount of information generated. In this work, a new front-end circuit that allows low reverse bias overvoltage sensor operation to reduce the noise in Geiger mode avalanche photodiode pixel detectors is presented. The proposed front-end circuit also enables to operate the sensor in the gated acquisition mode to further reduce the noise. Experimental characterization of the fabricated pixel with the conventional HV-AMS 0.35µm technology is also presented in this article.