25 resultados para complex nonlinear least squares
Resumo:
La principal aportación de este trabajo es poner de manifiesto que la capacidad absortiva de las economías cambia en función de si el país es el líder o es un seguidor. Aunque tampoco olvidamos otras variables como son la I+D interna, la I+D externa, el desarrollo del sistema financiero y las instituciones. Para ello, primero se prueba la presencia de una raíz unitaria y después se asegura una relación de cointegración entre las variables implicadas en el modelo para poder sacar conclusiones a largo plazo. Y por último, para estimar el modelo, se utilizará una técnica econométrica que combina el tratamiento tradicional de los datos de panel con las técnicas de cointegración: los Dynamics Ordinary Least Squares (DOLS). Esta técnica soluciona las limitaciones de los OLS, ya que su distribución no suele ser estándar por la presencia de un sesgo de muestras finitas (causado bien por la endogeneidad de las variables explicativas bien por la correlación serial de la perturbación). Utilizando un panel de datos que comprende 8 países de la OECD entre 1973-2004 y para el Business Sector, se encuentran diversos resultados, entre los que destacamos que la I+D interna, la I+D externa, la frontera tecnológica, la capacidad absortiva y el desarrollo de las instituciones tienen un impacto positivo sobre el nivel de la PTF. En cambio, el desarrollo del sistema financiero tiene un impacto negativo. Palabras claves: fuentes de la I+D, frontera tecnológica, capacidad absortiva, raíces unitarias, cointegración, DOLS.
Resumo:
The Maximum Capture problem (MAXCAP) is a decision model that addresses the issue of location in a competitive environment. This paper presents a new approach to determine which store s attributes (other than distance) should be included in the newMarket Capture Models and how they ought to be reflected using the Multiplicative Competitive Interaction model. The methodology involves the design and development of a survey; and the application of factor analysis and ordinary least squares. Themethodology has been applied to the supermarket sector in two different scenarios: Milton Keynes (Great Britain) and Barcelona (Spain).
Resumo:
We construct a weighted Euclidean distance that approximates any distance or dissimilarity measure between individuals that is based on a rectangular cases-by-variables data matrix. In contrast to regular multidimensional scaling methods for dissimilarity data, the method leads to biplots of individuals and variables while preserving all the good properties of dimension-reduction methods that are based on the singular-value decomposition. The main benefits are the decomposition of variance into components along principal axes, which provide the numerical diagnostics known as contributions, and the estimation of nonnegative weights for each variable. The idea is inspired by the distance functions used in correspondence analysis and in principal component analysis of standardized data, where the normalizations inherent in the distances can be considered as differential weighting of the variables. In weighted Euclidean biplots we allow these weights to be unknown parameters, which are estimated from the data to maximize the fit to the chosen distances or dissimilarities. These weights are estimated using a majorization algorithm. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing the matrix and displaying its rows and columns in biplots.
Resumo:
La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.
Resumo:
Objective: Health status measures usually have an asymmetric distribution and present a highpercentage of respondents with the best possible score (ceiling effect), specially when they areassessed in the overall population. Different methods to model this type of variables have beenproposed that take into account the ceiling effect: the tobit models, the Censored Least AbsoluteDeviations (CLAD) models or the two-part models, among others. The objective of this workwas to describe the tobit model, and compare it with the Ordinary Least Squares (OLS) model,that ignores the ceiling effect.Methods: Two different data sets have been used in order to compare both models: a) real datacomming from the European Study of Mental Disorders (ESEMeD), in order to model theEQ5D index, one of the measures of utilities most commonly used for the evaluation of healthstatus; and b) data obtained from simulation. Cross-validation was used to compare thepredicted values of the tobit model and the OLS models. The following estimators werecompared: the percentage of absolute error (R1), the percentage of squared error (R2), the MeanSquared Error (MSE) and the Mean Absolute Prediction Error (MAPE). Different datasets werecreated for different values of the error variance and different percentages of individuals withceiling effect. The estimations of the coefficients, the percentage of explained variance and theplots of residuals versus predicted values obtained under each model were compared.Results: With regard to the results of the ESEMeD study, the predicted values obtained with theOLS model and those obtained with the tobit models were very similar. The regressioncoefficients of the linear model were consistently smaller than those from the tobit model. In thesimulation study, we observed that when the error variance was small (s=1), the tobit modelpresented unbiased estimations of the coefficients and accurate predicted values, specially whenthe percentage of individuals wiht the highest possible score was small. However, when theerrror variance was greater (s=10 or s=20), the percentage of explained variance for the tobitmodel and the predicted values were more similar to those obtained with an OLS model.Conclusions: The proportion of variability accounted for the models and the percentage ofindividuals with the highest possible score have an important effect in the performance of thetobit model in comparison with the linear model.
Resumo:
La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.
Resumo:
The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.
Resumo:
This paper examines the role of assortative mating in the intergenerational economic mobility in Spain. Sons and daughters usually marry individuals with similar characteristics, which may lower mobility. Our empirical strategy employs the Two-sample two-stage least squares estimator to estimate the intergenerational income elasticity in absence of data for two generations not residing in the same household. Our findings suggest that assortative mating plays an important role in the intergenerational transmission process. On average about 50 per 100 of the covariance between parents’ income and child family’s incomecan be accounted for by the person the child is married to
Resumo:
This article analyses the impact that innovation expenditure and intrasectoral and intersectoral externalities have on productivity in Spanish firms. While there is an extensive literature analysing the relationship between innovation and productivity, in this particular area there are far fewer studies that examine the importance of sectoral externalities, especially with the focus on Spain. One novelty of the study, which covers the industrial and service sectors, is that we also consider jointly the technology level of the sector in which the firm operates and the firm size. The database used is the Technological Innovation Panel, PITEC, which includes 12,813 firms for the year 2008 and has been little used in this type of study. The estimation method used is Iteratively Reweighted Least Squares method, IRLS, which is very useful for obtaining robust estimations in the presence of outliers. The results confirm that innovation has a positive effect on productivity, especially in high-tech and large firms. The impact of externalities is more heterogeneous because, while intrasectoral externalities have a poitive and significant effect, especially in low-tech firms independently of size, intersectoral externalities have a more ambiguous effect, being clearly significant for advanced industries in which size has a positive effect.
Resumo:
A new analytical method was developed to non-destructively determine pH and degree of polymerisation (DP) of cellulose in fibres in 19th 20th century painting canvases, and to identify the fibre type: cotton, linen, hemp, ramie or jute. The method is based on NIR spectroscopy and multivariate data analysis, while for calibration and validation a reference collection of 199 historical canvas samples was used. The reference collection was analysed destructively using microscopy and chemical analytical methods. Partial least squares regression was used to build quantitative methods to determine pH and DP, and linear discriminant analysis was used to determine the fibre type. To interpret the obtained chemical information, an expert assessment panel developed a categorisation system to discriminate between canvases that may not be fit to withstand excessive mechanical stress, e.g. transportation. The limiting DP for this category was found to be 600. With the new method and categorisation system, canvases of 12 Dalí paintings from the Fundació Gala-Salvador Dalí (Figueres, Spain) were non-destructively analysed for pH, DP and fibre type, and their fitness determined, which informs conservation recommendations. The study demonstrates that collection-wide canvas condition surveys can be performed efficiently and non-destructively, which could significantly improve collection management.