25 resultados para clot activator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamento: La prevalencia de discapacidad en la población general presenta una gran variabilidad geográfica, de manera que identificar aquellos factores que pudieran explicarla será importante para la planificación de políticas sociales. En este trabajo se analiza la variabilidad de la discapacidad por comunidades autónomas desde una doble vertiente, los factores individuales y del entorno. Métodos: Los datos proceden principalmente de la Encuesta de Discapacidad, Deficiencias y Estado de Salud de 1999 y del Inebase, ambas del Instituto Nacional de Estadística (INE). Se calculó la prevalencia de discapacidad simple y ajustada por edad de las CCAA. Se analizan los factores individuales asociados a la discapacidad mediante una regresión logística y los factores individuales y de la comunidad autónoma conjuntamente con una regresión logística de dos niveles. Resultados: La prevalencia de discapacidad muestra una diferencia máxima de 5,75 puntos entre las comunidades autónomas. En la regresión logística la comunidad de residencia fue estadísticamente significativa (OR: 3,35 en la de mayor prevalencia respecto a la de menor) junto con otras variables individuales: edad (OR de 40-64= 1,78 OR de 65-79= 1,87 y OR de >79= 3,34), sexo (OR mujer= 0,66), situación laboral (OR sin trabajo=2,25 OR amas casa/estudiante=1,39 y OR otros=2,03), estado de salud (OR regular= 1,69 OR malo/muy malo= 2,05) y enfermedades crónicas (OR 1-3=1,56 OR4-6=1,82 OR>6=2,59). En la regresión de dos niveles las variables individuales explican poca varianza (s=0,261) y ninguna de las variables relativas a las CCAA mejora el modelo. Conclusiones: Las características individuales no explican suficientemente la variabilidad de la discapacidad entre CCAA y no se han identificado variables del entorno que sean significativas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La industria de la producción de camarón es una de las industrias acuícolas que se encuentra en más crecimiento en la actualidad. Los estudios para encontrar marcadores genéticos son muy efectivos para la mejora de sus propiedades y de gran interés para los productores de camarón. En este trabajo se utilizaron seis individuos de una población de Litopenaeus vannamei, donde se encontraron cuatro polimorfismos de nucleótido único (SNPs) en el gen 5HT1R (5-hidroxitriptamina receptor1) y un SNP en el gen STAT (transductor de señal y activador de la transcripción). Sin embargo, el polimorfismo en el gen STAT resultó ser homocigoto en una población diferente utilizada para análisis de asociación. Los presentes análisis revelaron que el alelo C, en dos polimorfismos SNP (C109T y C395G) del gen 5HT1R, tiende a estar asociado con el aumento del peso corporal. Consideramos que hay necesidad de hacer nuevos estudios utilizando una muestra más amplia y diversa de la población en cuestión.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo se analiza lingüísticamente la toponimia documental que pertenece a los núcleos de población del Ayuntamiento de Foradada del Toscar. Para ello partimos, principalmente, de la lectura de dos fuentes documentales inéditas: los Amillaramientos con rectificaciones hasta el año 1879 (Am.) conservados en el Archivo Histórico Provincial de Huesca (AHPH) y, sobre todo, los Protocolos Notariales de Pedro de Guart (Protocolos) conservados en el Archivo Capitular de Lérida (ACL). El análisis se realiza desde el punto de vista tradicional de la toponimia diacrónica. La mayoría de los topónimos estudiados proceden de una base lingüística latina; otros, en cambio, están relacionados con las lenguas prerromanas (barza, clot, coma, por ejemplo) y con el elemento lingüistico vasco (Gabessaco).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythroid burst forming units (BFU-E) are proliferative cells present in peripheral blood and bone marrow which may be precursors of the erythroid colony forming cell found in the bone marrow. To examine the possible role of monocyte-macrophages in the modulation of erythropoiesis, the effect of monocytes on peripheral blood BFU-E proliferation in response to erythropoietin was investigated in the plasma clot culture system. Peripheral blood mononuclear cells from normal human donors were separated into four fractions. Fraction-I cells were obtained from the interface of Ficoll-Hypaque gradients (20-30% monocytes; 60-80% lymphocytes); fraction-II cells were fraction-I cells that were nonadherent to plastic (2-10% monocytes; 90-98% lymphocytes); fraction-III cells were obtained by incubation of fraction-II cells with carbonyl iron followed by Ficoll-Hypaque centrifugation (>99% lymphocytes); and fraction-IV cells represented the adherent population of fraction-II cells released from the plastic by lidocaine (>95% monocytes). When cells from these fractions were cultured in the presence of erythropoietin, the number of BFU-E-derived colonies was inversely proportional to the number of monocytes present (r = ¿0.96, P < 0.001). The suppressive effect of monocytes on BFU-E proliferation was confirmed by admixing autologous purified monocytes (fraction-IV cells) with fraction-III cells. Monocyte concentrations of ¿20% completely suppressed BFU-E activity. Reduction in the number of plated BFU-E by monocyte dilution could not account for these findings: a 15% reduction in the number of fraction-III cells plated resulted in only a 15% reduction in colony formation. These results indicate that monocyte-macrophages may play a significant role in the regulation of erythropoiesis and be involved in the pathogenesis of the hypoproliferative anemias associated with infection and certain neoplasia in which increased monocyte activity and monopoiesis also occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modulation of signalling pathways can trigger different cellular responses, including differences in cell fate. This modulation can be achieved by controlling the pathway activity with great precision to ensure robustness and reproducibility of the specification of cell fate. The development of the photoreceptor R7 in the Drosophila melanogasterretina has become a model in which to investigate the control of cell signalling. During R7 specification, a burst of Ras small GTPase (Ras) and mitogen-activated protein kinase (MAPK) controlled by Sevenless receptor tyrosine kinase (Sev) is required. Several cells in each ommatidium express sev. However, the spatiotemporal expression of the boss ligand and the action of negative regulators of the Sev pathway will restrict the R7 fate to a single cell. The Drosophila suppressor of cytokine signalling 36E (SOCS36E) protein contains an SH2 domain and acts as a Sev signalling attenuator. By contrast, downstream of receptor kinase (Drk), the fly homolog of the mammalian Grb2 adaptor protein, which also contains an SH2 domain, acts as a positive activator of the pathway. Here, we apply the Förster resonance energy transfer (FRET) assay to transfected Drosophila S2 cells and demonstrate that Sev binds directly to either the suppressor protein SOCS36E or the adaptor protein Drk. We propose a mechanistic model in which the competition between these two proteins for binding to the same docking site results in either attenuation of the Sev transduction in cells that should not develop R7 photoreceptors or amplification of the Ras-MAPK signal only in the R7 precursor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary cultures of gilthead sea bream myocytes were performed in order to examine the relative metabolic function of insulin compared with IGF-I and IGF-II (insulin-like growth factors, IGFs) at different stages in the cell culture. In these cells, the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) and L-alanine uptake were studied in both myocytes (day 4) and small myotubes (day 9). 2-DG uptake in gilthead sea bream muscle cells was increased in the presence of insulin and IGFs in a time dependent manner and along with muscle cell differentiation. On the contrary, L-alanine uptake was also stimulated by insulin and IGFs but showed an inverse pattern, being the uptake higher in small myocytes than in large myotubes. The results of preincubation with inhibitors (PD-98059, wortmannin, and cytochalasin B) on 2-DG uptake indicated that insulin and IGFs stimulate glucose uptake through the same mechanisms, and evidenced that mitogenesis activator protein kinase (MAPK) and PI3K-Akt transduction pathways mediate the metabolic function of these peptides. In the same way, we observed that GLUT4 protein synthesis was stimulated in the presence of insulin and IGFs in gilthead sea bream muscle cells in a different manner at days 4 or 9 of the culture. In summary we describe here, for the first time, the effects of insulin and IGFs on 2-DG and L-alanine uptake in primary culture of gilthead sea bream muscle cells. We show that both MAPK and PI3K-Akt transduction pathways are needed in order to control insulin and IGFs actions in these cells. Moreover, changes in glucose uptake can be explained by the action of the GLUT4 transporter, which is stimulated in the presence of insulin and IGFs throughout the cell culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lldPRD operon of Escherichia coli, involved in L-lactate metabolism, is induced by growth in this compound. We experimentally identified that this system is transcribed from a single promoter with an initiation site located 110 nucleotides upstream of the ATG start codon. On the basis of computational data, it had been proposed that LldR and its homologue PdhR act as regulators of the lldPRD operon. Nevertheless, no experimental data on the function of these regulators have been reported so far. Here we show that induction of an lldP-lacZ fusion by L-lactate is lost in an lldR mutant, indicating the role of LldR in this induction. Expression analysis of this construct in a pdhR mutant ruled out the participation of PdhR in the control of lldPRD. Gel shift experiments showed that LldR binds to two operator sites, O1 (positions 105 to 89) and O2 (positions 22 to 38), with O1 being filled at a lower concentration of LldR. L-Lactate induced a conformational change in LldR that did not modify its DNA binding activity. Mutations in O1 and O2 enhanced the basal transcriptional level. However, only mutations in O1 abolished induction by L-lactate. Mutants with a change in helical phasing between O1 and O2 behaved like O2 mutants. These results were consistent with the hypothesis that LldR has a dual role, acting as a repressor or an activator of lldPRD. We propose that in the absence of L-lactate, LldR binds to both O1 and O2, probably leading to DNA looping and the repression of transcription. Binding of L-lactate to LldR promotes a conformational change that may disrupt the DNA loop, allowing the formation of the transcription open complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibrinolytic therapy with Recombinant Tissue-Plasminogen Activator (rt-PA) is currently the only effective treatment for ischaemic stroke in its acute phase. Even though its use generally improves the prognosis of those patients likely to receive it, rt-PA administration is associated to several risks, such as haemorrhagic transformation ofthe ischaemic lesion and activation of excitotoxic mechanisms that may contribute to an increase in mortality or to a poor outcome in certain occasions, specially when arterial recanalization is not achieved or the rt-PA is lately administrated. Since in the last few years the role of glutamate in the neurotoxicity associated toischaemia has been widely studied and it is known that high plasma glutamate levels are predictors of ischaemic lesion growth and poor neurological outcome, it is necessary to find out which factors can contribute to glutamate release in the brain. The aim of this study is to determine if rt-PA administration is related to an increase in plasma glutamate levels, as well as to define if higher plasma glutamate levels at admission are related to different evolution and prognosis of our patients, both in those in which recanalisation is achieved and not. A series of cases of patients with hemispheric cerebral infarction admitted in our hospital during a year will be studied, and the data obtained from them will be compared to the data obtained from a control group, the samples of wich were takenyears ago, before rt-PA was routinely used