58 resultados para automatic translation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic classification of makams from symbolic data is a rarely studied topic. In this paper, first a review of an n-gram based approach is presented using various representations of the symbolic data. While a high degree of precision can be obtained, confusion happens mainly for makams using (almost) the same scale and pitch hierarchy but differ in overall melodic progression, seyir. To further improve the system, first n-gram based classification is tested for various sections of the piece to take into account a feature of the seyir that melodic progression starts in a certain region of the scale. In a second test, a hierarchical classification structure is designed which uses n-grams and seyir features in different levels to further improve the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language Resources are a critical component for Natural Language Processing applications. Throughout the years many resources were manually created for the same task, but with different granularity and coverage information. To create richer resources for a broad range of potential reuses, nformation from all resources has to be joined into one. The hight cost of comparing and merging different resources by hand has been a bottleneck for merging existing resources. With the objective of reducing human intervention, we present a new method for automating merging resources. We have addressed the merging of two verbs subcategorization frame (SCF) lexica for Spanish. The results achieved, a new lexicon with enriched information and conflicting information signalled, reinforce our idea that this approach can be applied for other task of NLP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on the results of the research done towards the fully automatically merging of lexical resources. Our main goal is to show the generality of the proposed approach, which have been previously applied to merge Spanish Subcategorization Frames lexica. In this work we extend and apply the same technique to perform the merging of morphosyntactic lexica encoded in LMF. The experiments showed that the technique is general enough to obtain good results in these two different tasks which is an important step towards performing the merging of lexical resources fully automatically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work we present here addresses cue-based noun classification in English and Spanish. Its main objective is to automatically acquire lexical semantic information by classifying nouns into previously known noun lexical classes. This is achieved by using particular aspects of linguistic contexts as cues that identify a specific lexical class. Here we concentrate on the task of identifying such cues and the theoretical background that allows for an assessment of the complexity of the task. The results show that, despite of the a-priori complexity of the task, cue-based classification is a useful tool in the automatic acquisition of lexical semantic classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic creation of polarity lexicons is a crucial issue to be solved in order to reduce time andefforts in the first steps of Sentiment Analysis. In this paper we present a methodology based onlinguistic cues that allows us to automatically discover, extract and label subjective adjectivesthat should be collected in a domain-based polarity lexicon. For this purpose, we designed abootstrapping algorithm that, from a small set of seed polar adjectives, is capable to iterativelyidentify, extract and annotate positive and negative adjectives. Additionally, the methodautomatically creates lists of highly subjective elements that change their prior polarity evenwithin the same domain. The algorithm proposed reached a precision of 97.5% for positiveadjectives and 71.4% for negative ones in the semantic orientation identification task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a webservice architecture for Statistical Machine Translation aimed at non-technical users. A workfloweditor allows a user to combine different webservices using a graphical user interface. In the current state of this project,the webservices have been implemented for a range of sentential and sub-sententialaligners. The advantage of a common interface and a common data format allows the user to build workflows exchanging different aligners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lexical Resources are a critical component for Natural Language Processing applications. However, the high cost of comparing and merging different resources has been a bottleneck to have richer resources with a broad range of potential uses for a significant number of languages.With the objective of reducing cost byeliminating human intervention, we present a new method for automating the merging of resources,with special emphasis in what we call the mapping step. This mapping step, which converts the resources into a common format that allows latter the merging, is usually performed with huge manual effort and thus makes the whole process very costly. Thus, we propose a method to perform this mapping fully automatically. To test our method, we have addressed the merging of two verb subcategorization frame lexica for Spanish, The resultsachieved, that almost replicate human work, demonstrate the feasibility of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present the results of experimental work on the development of lexical class-based lexica by automatic means. Our purpose is to assess the use of linguistic lexical-class based information as a feature selection methodology for the use of classifiers in quick lexical development. The results show that the approach can help reduce the human effort required in the development of language resources significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lexical Resources are a critical component for Natural Language Processing applications. However, the high cost of comparing and merging different resources has been a bottleneck to obtain richer resources and a broader range of potential uses for a significant number of languages. With the objective of reducing cost by eliminating human intervention, we present a new method towards the automatic merging of resources. This method includes both, the automatic mapping of resources involved to a common format and merging them, once in this format. This paper presents how we have addressed the merging of two verb subcategorization frame lexica for Spanish, but our method will be extended to cover other types of Lexical Resources. The achieved results, that almost replicate human work, demonstrate the feasibility of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing multilingual trend in movie production comes with a challenge for dubbing translators since they are increasingly confronted with more than one source language. The main purpose of this master’s thesis is to provide a case study on how these third languages (see CORRIUS and ZABALBEASCOA 2011) are rendered. Another aim is to put a particular focus on their textual and narrative functions and detect possible shifts that might occur in translations. By applying a theoretical model for translation analysis (CORRIUS and ZABALBEASCOA 2011), this study describes how third languages are rendered in the German, Spanish, and Italian dubbed versions of the 2009 Tarantino movie Inglourious Basterds. A broad range of solution-types are thereby revealed and prevalent restrictions of the translation process identified. The target texts are brought in context with some sociohistorical aspects of dubbing in order to detect prevalent norms of the respective cultures andto discuss the acceptability of translations (TOURY 1995). The translatability potential of even highly complex multilingual audiovisual texts is demonstrated in this study. Moreover, proposals for further studies in multilingual audiovisual translation are outlined and the potential for future investigations in this field thereby emphasised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations. Method We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure. Results We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis. Conclusion CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions