28 resultados para automatic target detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intuitively, music has both predictable and unpredictable components. In this work we assess this qualitative statement in a quantitative way using common time series models fitted to state-of-the-art music descriptors. These descriptors cover different musical facets and are extracted from a large collection of real audio recordings comprising a variety of musical genres. Our findings show that music descriptor time series exhibit a certain predictability not only for short time intervals, but also for mid-term and relatively long intervals. This fact is observed independently of the descriptor, musical facet and time series model we consider. Moreover, we show that our findings are not only of theoretical relevance but can also have practical impact. To this end we demonstrate that music predictability at relatively long time intervals can be exploited in a real-world application, namely the automatic identification of cover songs (i.e. different renditions or versions of the same musical piece). Importantly, this prediction strategy yields a parameter-free approach for cover song identification that is substantially faster, allows for reduced computational storage and still maintains highly competitive accuracies when compared to state-of-the-art systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic creation of polarity lexicons is a crucial issue to be solved in order to reduce time andefforts in the first steps of Sentiment Analysis. In this paper we present a methodology based onlinguistic cues that allows us to automatically discover, extract and label subjective adjectivesthat should be collected in a domain-based polarity lexicon. For this purpose, we designed abootstrapping algorithm that, from a small set of seed polar adjectives, is capable to iterativelyidentify, extract and annotate positive and negative adjectives. Additionally, the methodautomatically creates lists of highly subjective elements that change their prior polarity evenwithin the same domain. The algorithm proposed reached a precision of 97.5% for positiveadjectives and 71.4% for negative ones in the semantic orientation identification task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method to detect patterns in defocused scenes by means of a joint transform correlator. We describe analytically the correlation plane, and we also introduce an original procedure to recognize the target by postprocessing the correlation plane. The performance of the methodology when the defocused images are corrupted by additive noise is also considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations. Method We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure. Results We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis. Conclusion CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seismic methods used in the study of snow avalanches may be employed to detect and characterize landslides and other mass movements, using standard spectrogram/sonogram analysis. For snow avalanches, the spectrogram for a station that is approached by a sliding mass exhibits a triangular time/frequency signature due to an increase over time in the higher-frequency constituents. Recognition of this characteristic footprint in a spectrogram suggests a useful metric for identifying other mass-movement events such as landslides. The 1 June 2005 slide at Laguna Beach, California is examined using data obtained from the Caltech/USGS Regional Seismic Network. This event exhibits the same general spectrogram features observed in studies of Alpine snow avalanches. We propose that these features are due to the systematic relative increase in high-frequency energy transmitted to a seismometer in the path of a mass slide owing to a reduction of distance from the source signal. This phenomenon is related to the path of the waves whose high frequencies are less attenuated as they traverse shorter source-receiver paths. Entrainment of material in the course of the slide may also contribute to the triangular time/frequency signature as a consequence of the increase in the energy involved in the process; in this case the contribution would be a source effect. By applying this commonly observed characteristic to routine monitoring algorithms, along with custom adjustments for local site effects, we seek to contribute to the improvement in automatic detection and monitoring methods of landslides and other mass movements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melodic motifs form essential building blocks in Indian Classical music. The motifs, or key phrases, providestrong cues to the identity of the underlying raga in both Hindustani and Carnatic styles of Indian music. Automatic identification and clustering of similar motifs is relevant in this context. The inherent variations in various instances of a characteristic phrase in a bandish (composition)performance make it challenging to identify similar phrases in a performance. A nyas svara (long note)marks the ending of these phrases. The proposed method does segmentation of phrases through identification ofnyas and computes similarity with the reference characteristic phrase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mismatch negativity is an electrophysiological marker of auditory change detection in the event-related brain potential and has been proposed to reflect an automatic comparison process between an incoming stimulus and the representation of prior items in a sequence. There is evidence for two main functional subcomponents comprising the MMN, generated by temporal and frontal brain areas, respectively. Using data obtained in an MMN paradigm, we performed time-frequency analysis to reveal the changes in oscillatory neural activity in the theta band. The results suggest that the frontal component of the MMN is brought about by an increase in theta power for the deviant trials and, possibly, by an additional contribution of theta phase alignment. By contrast, the temporal component of the MMN, best seen in recordings from mastoid electrodes, is generated by phase resetting of theta rhythm with no concomitant power modulation. Thus, frontal and temporal MMN components do not only differ with regard to their functional significance but also appear to be generated by distinct neurophysiological mechanisms.