32 resultados para autocorrelation
Resumo:
Effect size indices are indispensable for carrying out meta-analyses and can also be seen as an alternative for making decisions about the effectiveness of a treatment in an individual applied study. The desirable features of the procedures for quantifying the magnitude of intervention effect include educational/clinical meaningfulness, calculus easiness, insensitivity to autocorrelation, low false alarm and low miss rates. Three effect size indices related to visual analysis are compared according to the aforementioned criteria. The comparison is made by means of data sets with known parameters: degree of serial dependence, presence or absence of general trend, changes in level and/or in slope. The percent of nonoverlapping data showed the highest discrimination between data sets with and without intervention effect. In cases when autocorrelation or trend is present, the percentage of data points exceeding the median may be a better option to quantify the effectiveness of a psychological treatment.
Resumo:
Visual inspection remains the most frequently applied method for detecting treatment effects in single-case designs. The advantages and limitations of visual inference are here discussed in relation to other procedures for assessing intervention effectiveness. The first part of the paper reviews previous research on visual analysis, paying special attention to the validation of visual analysts" decisions, inter-judge agreement, and false alarm and omission rates. The most relevant factors affecting visual inspection (i.e., effect size, autocorrelation, data variability, and analysts" expertise) are highlighted and incorporated into an empirical simulation study with the aim of providing further evidence about the reliability of visual analysis. Our results concur with previous studies that have reported the relationship between serial dependence and increased Type I rates. Participants with greater experience appeared to be more conservative and used more consistent criteria when assessing graphed data. Nonetheless, the decisions made by both professionals and students did not match sufficiently the simulated data features, and we also found low intra-judge agreement, thus suggesting that visual inspection should be complemented by other methods when assessing treatment effectiveness.
Resumo:
The present study proposes a modification in one of the most frequently applied effect size procedures in single-case data analysis the percent of nonoverlapping data. In contrast to other techniques, the calculus and interpretation of this procedure is straightforward and it can be easily complemented by visual inspection of the graphed data. Although the percent of nonoverlapping data has been found to perform reasonably well in N = 1 data, the magnitude of effect estimates it yields can be distorted by trend and autocorrelation. Therefore, the data correction procedure focuses on removing the baseline trend from data prior to estimating the change produced in the behavior due to intervention. A simulation study is carried out in order to compare the original and the modified procedures in several experimental conditions. The results suggest that the new proposal is unaffected by trend and autocorrelation and can be used in case of unstable baselines and sequentially related measurements.
Resumo:
The present study focuses on single-case data analysis and specifically on two procedures for quantifying differences between baseline and treatment measurements The first technique tested is based on generalized least squares regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The comparison is carried out in the context of generated data representing a variety of patterns (i.e., independent measurements, different serial dependence underlying processes, constant or phase-specific autocorrelation and data variability, different types of trend, and slope and level change). The results suggest that the two techniques perform adequately for a wide range of conditions and researchers can use both of them with certain guarantees. The regression-based procedure offers more efficient estimates, whereas the proposed non-regression procedure is more sensitive to intervention effects. Considering current and previous findings, some tentative recommendations are offered to applied researchers in order to help choosing among the plurality of single-case data analysis techniques.
Resumo:
We analyze the short-time dynamical behavior of a colloidal suspension in a confined geometry. We analyze the relevant dynamical response of the solvent, and derive the temporal behavior of the velocity autocorrelation function, which exhibits an asymptotic negative algebraic decay. We are able to compare quantitatively with theoretical expressions, and analyze the effects of confinement on the diffusive behavior of the suspension.
Resumo:
An effect of drift is investigated on the segregation pattern in diffusion-limited aggregation (DLA) with two components (A and B species). The sticking probability PAB (=PBA) between the different species is introduced into the DLA model with drift, where the sticking probability PAA (=PBB) between the same species equals 1. By using computer simulation it is found that the drift has an important effect on not only the morphology but also the segregation pattern. Under the drift and the small sticking probability, a characteristic pattern appears where elongated clusters of A species and of B species are periodically dispersed. The period decreases with increasing drift. The periodic structure of the deposits is characterized by an autocorrelation function. The shape of the cluster consisting of only A species (or B species) shows a vertically elongated filamentlike structure. Each cluster becomes vertically longer with decreasing sticking probability PAB. The segregation pattern is distinctly different from that with no drift and a small sticking probability PAA. The effect of the concentration on the segregation pattern is also shown.
Resumo:
We describe the spatial distribution of tree height of Pinus uncinata at two undisturbed altitudinal treeline ecotones in the southern Pyrenees (Ordesa, O, and Tessó, T). At each site, a rectangular plot (30 x 140 m) was located with its longest side parallel to the slope and encompassing treeline and timberline. At site O, height increased abruptly going downslope with a high spatial autocorrelation at short distances. In contrast, the changes of tree height across the ecotone at site T were gradual, and tree height was less spatially autocorrelated. These results can be explained by the greater importance of wind and snow avalanches at sites O and T, respectively.
Resumo:
La estadística aplicada a la geografía ha experimentado un avance espectacular en las últimas dos décadas introduciéndose el espacio como eje fundamental del análisis. Este avance se ha visto acompañado por un rápido desarrollo de aplicaciones estadísticas integradas en los sistemas de información geográfica, constituyéndose de esta forma en un conjunto de herramientas imprescindibles en la planificación territorial. Por otro lado, en España, el incremento de población inmigrada en un corto intervalo de tiempo ha hecho necesario analizar su distribución espacial en las áreas urbanas. Los índices de autocorrelación espacial, tanto global como local, y su representación cartográfica constituyen una técnica adecuada para la detección de clusters y patrones espaciales y abre la posibilidad de plantear diferentes modelos econométricos. A partir del caso de la ciudad de Barcelona se aplican las técnicas descritas y se observan los diferentes comportamientos según el grupo de población estudiado.
Resumo:
In this paper we develop a new linear approach to identify the parameters of a moving average (MA) model from the statistics of the output. First, we show that, under some constraints, the impulse response of the system can be expressed as a linear combination of cumulant slices. Then, thisresult is used to obtain a new well-conditioned linear methodto estimate the MA parameters of a non-Gaussian process. Theproposed method presents several important differences withexisting linear approaches. The linear combination of slices usedto compute the MA parameters can be constructed from dif-ferent sets of cumulants of different orders, providing a generalframework where all the statistics can be combined. Further-more, it is not necessary to use second-order statistics (the autocorrelation slice), and therefore the proposed algorithm stillprovides consistent estimates in the presence of colored Gaussian noise. Another advantage of the method is that while mostlinear methods developed so far give totally erroneous estimates if the order is overestimated, the proposed approach doesnot require a previous estimation of the filter order. The simulation results confirm the good numerical conditioning of thealgorithm and the improvement in performance with respect to existing methods.
Resumo:
El presente trabajo tiene por objetivo principal analizar tres funciones de perfil del fuste sobre tres clones de Populus x euramericana (Canadá Blanco, I-214 y MC) en la Comunidad Foral de Navarra para elaborar una tarifa de cubicación con clasificación de volumen. Para minimizar el efecto de la autocorrelación entre los residuos se emplea una estructura de error continua autorregresiva de orden 2 o de orden 3 en función del clon analizado. Por otra parte, se compara el coeficiente local de forma de cada uno de los clones estudiados mediante dos metodologías: el análisis de la varianza de la estimación individual de dicho coeficiente y el contraste del estadístico de máxima verosimilitud entre ajustes, resultando ser el clon Canadá el más cónico de los tres. Los datos utilizados provienen de 143 chopos de plantaciones coetáneas y con mismo marco de plantación (marco real de 4,5 × 4,5 m).
Resumo:
This study deals with the statistical properties of a randomization test applied to an ABAB design in cases where the desirable random assignment of the points of change in phase is not possible. In order to obtain information about each possible data division we carried out a conditional Monte Carlo simulation with 100,000 samples for each systematically chosen triplet. Robustness and power are studied under several experimental conditions: different autocorrelation levels and different effect sizes, as well as different phase lengths determined by the points of change. Type I error rates were distorted by the presence of autocorrelation for the majority of data divisions. Satisfactory Type II error rates were obtained only for large treatment effects. The relationship between the lengths of the four phases appeared to be an important factor for the robustness and the power of the randomization test.
Resumo:
Las diferencias geográficas en los niveles de ingresos son importantes para elaborar e implementar políticas en las ciudades. Con el objetivo de estimar el nivel de ingresos y analizar su distribución espacial se presenta un método alternativo e innovador que enlaza estimaciones de salarios provenientes de la Encuesta de Estructura Salarial (EES) con datos del padrón de habitantes (1996) y del Censo (2001) desagregados por secciones censales. Los resultados tienen un nivel de detalle espacial significativamente mejor que los disponibles. Se obtiene el valor de la Renta Salarial Media para cada una de las 2500 secciones censales de los 36 municipios pertenecientes a la AMB y para dos periodos. La Renta Salarial presenta una elevada autocorrelación espacial positiva; zonas con niveles similares se concentran espacialmente. La desigualdad en el AMB ha aumentado en el periodo analizado. Este aumento se debe principalmente al componente intra-municipal, es decir, las diferencias en el interior de cada municipio.
Resumo:
The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.
Resumo:
GDP has usually been used as a proxy for human well-being. Nevertheless, other social aspects should also be considered, such as life expectancy, infant mortality, educational enrolment and crime issues. With this paper we investigate not only economic convergence but also social convergence between regions in a developing country, Colombia, in the period 1975-2005. We consider several techniques in our analysis: sigma convergence, stochastic kernel estimations, and also several empirical models to find out the beta convergence parameter (cross section and panel estimates, with and without spatial dependence). The main results confirm that we can talk about convergence in Colombia in key social variables, although not in the classic economic variable, GDP per capita. We have also found that spatial autocorrelation reinforces convergence processes through deepening market and social factors, while isolation condemns regions to nonconvergence.
Resumo:
We investigate the importance of the labour mobility of inventors, as well as the scale, extent and density of their collaborative research networks, for regional innovation outcomes. To do so, we apply a knowledge production function framework at the regional level and include inventors’ networks and their labour mobility as regressors. Our empirical approach takes full account of spatial interactions by estimating a spatial lag model together, where necessary, with a spatial error model. In addition, standard errors are calculated using spatial heteroskedasticity and autocorrelation consistent estimators to ensure their robustness in the presence of spatial error autocorrelation and heteroskedasticity of unknown form. Our results point to the existence of a robust positive correlation between intraregional labour mobility and regional innovation, whilst the relationship with networks is less clear. However, networking across regions positively correlates with a region’s innovation intensity.