18 resultados para Waist-hip ratio
Resumo:
We analyzed offspring sex ratio variation in Mediterranean Cory's Shearwater (Calonectris d. diomedea) during two consecutive breeding seasons in two colonies. We test for differential breeding conditions between years and colonies looking at several breeding parameters and parental condition. We then explored the relationship between offspring sex ratio and parental condition and breeding parameters. This species is sexually dimorphic with males larger and heavier than females; consequently we expected differential parental cost in rearing sexes, or a greater sensitivity of male chicks to adverse conditions, which may lead to biased sex ratios. Chicks were sexed molecularly by the amplification of the CHD genes. Offspring sex ratio did not differ from parity, either at hatching or fledging, regardless of the colony or year. However, parental body condition and breeding parameters such as egg size and breeding success were different between years and colonies. Nevertheless, neither nestling mortality nor body condition at fledging varied between years or colonies, suggesting that male and female chicks were probably not differentially affected by variability in breeding conditions.
Resumo:
We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ϵ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ϵ ≠ 0, the topological transversality persists and Brouwer's fixed point theorem shows the existence of this kind of solutions in the full system
Resumo:
A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics. The constitutive equation that results from the definition of the free energy as a function of a damage variable is used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation proposed accounts for crack closure effets avoiding interfacial penetration of two adjacent layers aftercomplete decohesion. The model is implemented in a finite element formulation. The numerical predictions given by the model are compared with experimental results