32 resultados para Vähäsantanen, Katja
Resumo:
A new method for the calculation of first-passage times for non-Markovian processes is presented. In addition to the general formalism, some familiar examples are worked out in detail.
Resumo:
A recent paper by J. Heinrichs [Phys. Rev. E 48, 2397 (1993)] presents analytic expressions for the first-passage times and the survival probability for a particle moving in a field of random correlated forces. We believe that the analysis there is flawed due to an improper use of boundary conditions. We compare that result, in the white noise limit, with the known exact expression of the mean exit time.
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by dichotomous colored noise. We carry out an asymptotic expansion for short correlation times ¿c of the colored noise and find results that differ from those reported earlier. In particular, to retain corrections to O(¿c) we find that it is necessary to retain up to four derivatives of the potential function. We compare our asymptotic results to existing ones and also to exact ones obtained from numerical integration.
Resumo:
The phenomenon of resonant activation of a Brownian particle over a fluctuating barrier is revisited. We discuss the important distinctions between barriers that can fluctuate among up and down configurations, and barriers that are always up but that can fluctuate among different heights. A resonance as a function of the barrier fluctuation rate is found in both cases, but the nature and physical description of these resonances is quite distinct. The nature of the resonances, the physical basis for the resonant behavior, and the importance of boundary conditions are discussed in some detail. We obtain analytic expressions for the escape time over the barrier that explicitly capture the minima as a function of the barrier fluctuation rate, and show that our analytic results are in excellent agreement with numerical results.
Resumo:
In a recent paper, [J. M. Porrà, J. Masoliver, and K. Lindenberg, Phys. Rev. E 48, 951 (1993)], we derived the equations for the mean first-passage time for systems driven by the coin-toss square wave, a particular type of dichotomous noisy signal, to reach either one of two boundaries. The coin-toss square wave, which we here call periodic-persistent dichotomous noise, is a random signal that can only change its value at specified time points, where it changes its value with probability q or retains its previous value with probability p=1-q. These time points occur periodically at time intervals t. Here we consider the stationary version of this signal, that is, equilibrium periodic-persistent noise. We show that the mean first-passage time for systems driven by this stationary noise does not show either the discontinuities or the oscillations found in the case of nonstationary noise. We also discuss the existence of discontinuities in the mean first-passage time for random one-dimensional stochastic maps.
Resumo:
Two recently reported treatments [J. M. Porrà et al., Phys. Rev. A 44, 4866 (1991) and I. L¿Heureux and R. Kapral, J. Chem. Phys. 88, 7468 (1988)] of the problem of bistability driven by dichotomous colored noise with a small correlation time are brought into agreement with each other and with the exact numerical results of L¿Heureux and Kapral [J. Chem. Phys. 90, 2453 (1989)].
Resumo:
We study the mean-first-passage-time problem for systems driven by the coin-toss square-wave signal. Exact analytic solutions are obtained for the driftless case. We also obtain approximate solutions for the potential case. The mean-first-passage time exhibits discontinuities and a remarkable nonsmooth oscillatory behavior which, to our knowledge, has not been observed for other kinds of driving noise.
Resumo:
We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.
Resumo:
The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays
Resumo:
A simple kinetic model of a two-component deformable and reactive bilayer is presented. The two differently shaped components are interconverted by a nonequilibrium reaction, and a phenomenological coupling between local composition and curvature is proposed. When the two components are not miscible, linear stability analysis predicts, and numerical simulations show, the formation of stationary nonequilibrium composition/curvature patterns whose typical size is determined by the reactive process. For miscible components, a linearization of the dynamic equations is performed in order to evaluate the correlation function for shape fluctuations from which the behavior of these systems in micropipet aspiration experiments can be predicted.
Resumo:
We present a nonequlibrium approach for the study of a flexible bilayer whose two components induce distinct curvatures. In turn, the two components are interconverted by an externally promoted reaction. Phase separation of the two species in the surface results in the growth of domains characterized by different local composition and curvature modulations. This domain growth is limited by the effective mixing due to the interconversion reaction, leading to a finite characteristic domain size. In addition to these effects, first introduced in our earlier work [ Phys. Rev. E 71 051906 (2005)], the important new feature is the assumption that the reactive process actively affects the local curvature of the bilayer. Specifically, we suggest that a force energetically activated by external sources causes a modification of the shape of the membrane at the reaction site. Our results show the appearance of a rich and robust dynamical phenomenology that includes the generation of traveling and/or oscillatory patterns. Linear stability analysis, amplitude equations, and numerical simulations of the model kinetic equations confirm the occurrence of these spatiotemporal behaviors in nonequilibrium reactive bilayers.
Resumo:
Breather stability and longevity in thermally relaxing nonlinear arrays depend sensitively on their interactions with other excitations. We review numerical results for the relaxation of breathers in Fermi¿Pasta¿Ulam arrays, with a specific focus on the different relaxation channels and their dependence on the interparticle interactions, dimensionality, initial condition, and system parameters
Resumo:
In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV γ-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich data set of radio, hard and soft X-ray, and γ-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a ~3 day softening and recovery of the X-ray emission, followed almost immediately by a ~1 Jy radio flare at 15 GHz, followed by a 4.3σ γ-ray flare (E > 100 MeV) ~1.5 days later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the γ-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the γ-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for γ-ray emission from Cyg X-3.