21 resultados para Trapped Ions
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.
Resumo:
We have studied the current transport and electroluminescence properties of metal oxide semiconductor MOS devices in which the oxide layer, which is codoped with silicon nanoclusters and erbium ions, is made by magnetron sputtering. Electrical measurements have allowed us to identify a Poole-Frenkel conduction mechanism. We observe an important contribution of the Si nanoclusters to the conduction in silicon oxide films, and no evidence of Fowler-Nordheim tunneling. The results suggest that the electroluminescence of the erbium ions in these layers is generated by energy transfer from the Si nanoparticles. Finally, we report an electroluminescence power efficiency above 10−3%. © 2009 American Institute of Physics. doi:10.1063/1.3213386
Resumo:
In vertebrates, early brain development takes place at the expanded anterior end of the neural tube. After closure of the anterior neuropore, the brain wall forms a physiologically sealed cavity that encloses embryonic cerebrospinal fluid (E-CSF), a complex and protein-rich fluid that is initially composed of trapped amniotic fluid. E-CSF has several crucial roles in brain anlagen development. Recently, we reported the presence of transient blood-CSF barrier located in the brain stem lateral to the ventral midline, at the mesencephalon and prosencephalon level, in chick and rat embryos by transporting proteins, water, ions and glucose in a selective manner via transcellular routes. To test the actual relevance of the control of E-CSF composition and homeostasis on early brain development by this embryonic blood-CSF barrier, we block the activity of this barrier by treating the embryos with 6-aminonicotinamide gliotoxin (6-AN). We demonstrate that 6-AN treatment in chick embryos blocks protein transport across the embryonic blood-CSF barrier, and that the disruption of the barrier properties is due to the cease transcellular caveolae transport, as detected by CAV-1 expression cease. We also show that the lack of protein transport across the embryonic blood-CSF barrier influences neuroepithelial cell survival, proliferation and neurogenesis, as monitored by neurepithelial progenitor cells survival, proliferation and neurogenesis. The blockage of embryonic blood-CSF transport also disrupts water influx to the E-CSF, as revealed by an abnormal increase in brain anlagen volume. These experiments contribute to delineate the actual extent of this blood-CSF embryonic barrier controlling E-CSF composition and homeostasis and the actual important of this control for early brain development, as well as to elucidate the mechanism by which proteins and water are transported thought transcellular routes across the neuroectoderm, reinforcing the crucial role of E-CSF for brain development.
Resumo:
We present an analysis of factors influencing carrier transport and electroluminescence (EL) at 1.5 µm from erbium-doped silicon-rich silica (SiOx) layers. The effects of both the active layer thickness and the Si excess content on the electrical excitation of erbium are studied. We demonstrate that when the thickness is decreased from a few hundred to tens of nanometers the conductivity is greatly enhanced. Carrier transport is well described in all cases by a Poole-Frenkel mechanism, while the thickness-dependent current density suggests an evolution of both density and distribution of trapping states induced by Si nanoinclusions. We ascribe this observation to stress-induced effects prevailing in thin films, which inhibit the agglomeration of Si atoms, resulting in a high density of sub-nm Si inclusions that induce traps much shallower than those generated by Si nanoclusters (Si-ncs) formed in thicker films. There is no direct correlation between high conductivity and optimized EL intensity at 1.5 µm. Our results suggest that the main excitation mechanism governing the EL signal is impact excitation, which gradually becomes more efficient as film thickness increases, thanks to the increased segregation of Si-ncs, which in turn allows more efficient injection of hot electrons into the oxide matrix. Optimization of the EL signal is thus found to be a compromise between conductivity and both number and degree of segregation of Si-ncs, all of which are governed by a combination of excess Si content and sample thickness. This material study has strong implications for many electrically driven devices using Si-ncs or Si-excess mediated EL.
Resumo:
By exciting at 940 nm, we have characterized the 1.84 m near infrared emission of trivalent thulium ions in Yb3+, Tm3+:KGd WO4 2 single crystals as a function of the dopant concentration and temperature, from 10 K to room temperature. An overall 3H6 Stark splitting of 470 cm−1 for the Tm3+ ions in the Yb3+, Tm3+:KGd WO4 2 was obtained. We also studied the blue emission at 476 nm Tm3+ and the near infrared emissions at 1.48 m Tm3+ and 1 m Yb3+ as a function of the dopant concentration. Experimental decay times of the 1G4, 3H4, and 3F4 Tm3+ and 2F5/2 Yb3+ excited states have been measured as a function of Yb3+ and Tm3+ ion concentrations. For the 3F4 →3H6 transition of Tm3+ ions, we used the reciprocity method to calculate the maximum emission cross section of 3.07 10−20 cm2 at 1.84 m for the polarization parallel to the Nm principal optical direction.