57 resultados para Thermal sensations
Resumo:
In this paper we study the evolution of the kinetic features of the martensitic transition in a Cu-Al-Mn single crystal under thermal cycling. The use of several experimental techniques including optical microscopy, calorimetry, and acoustic emission, has enabled us to perform an analysis at multiple scales. In particular, we have focused on the analysis of avalanche events (associated with the nucleation and growth of martensitic domains), which occur during the transition. There are significant differences between the kinetics at large and small length scales. On the one hand, at small length scales, small avalanche events tend to sum to give new larger events in subsequent loops. On the other hand, at large length scales the large domains tend to split into smaller ones on thermal cycling. We suggest that such different behavior is the necessary ingredient that leads the system to the final critical state corresponding to a power-law distribution of avalanches.
Resumo:
Classical transport theory is employed to analyze the hot quark-gluon plasma at the leading order in the coupling constant. A condition on the (covariantly conserved) color current is obtained. From this condition, the generating functional of hard thermal loops with an arbitrary number of soft external bosonic legs can be derived. Our approach, besides being more direct than alternative ones, shows that hard thermal loops are essentially classical.
Resumo:
We study analytically a thermal Brownian motor model and calculate exactly the Onsager coefficients. We show how the reciprocity relation holds and that the determinant of the Onsager matrix vanishes. Such a condition implies that the device is built with tight coupling. This explains why Carnot¿s efficiency can be achieved in the limit of infinitely slow velocities. We also prove that the efficiency at maximum power has the maximum possible value, which corresponds to the Curzon-Alhborn bound. Finally, we discuss the model acting as a Brownian refrigerator.
Resumo:
An instrument designed to measure thermal conductivity of consolidated rocks, dry or saturated, using a transient method is presented. The instrument measures relative values of the thermal conductivity, and it needs calibration to obtain absolute values. The device can be used as heat pulse line source and as continuous heat line source. Two parameters to determine thermal conductivity are proposed: TMAX, in heat pulse line source, and SLOPE, in continuous heat line source. Its performance is better, and the operation simpler, in heat pulse line-source mode with a measuring time of 170 s and a reproducibility better than 2.5%. The sample preparation is very simple on both modes. The performance has been tested with a set of ten rocks with thermal conductivity values between 1.4 and 5.2 W m¿1 K¿1 which covers the usual range for consolidated rocks.
Resumo:
The metastable defects of a-Si:H samples annealed at temperatures in the 300-550°C range have been studied by photothermal deflection spectroscopy (PDS). The light-soaked samples show an increase in optical absorption in the 0.8 to 1.5 eV range. The metastable defect density decreases when the annealing temperature increases, while the defect density increases. This decrease in the metastable defect density shows an almost linear correlation with the decrease in the hydrogen content of the samples, determined by IR transmission spectroscopy and thermal desorption spectroscopy.
Resumo:
A computer-aided method to improve the thickness uniformity attainable when coating multiple substrates inside a thermal evaporation physical vapor deposition unit is presented. The study is developed for the classical spherical (dome-shaped) calotte and also for a plane sector reversible holder setup. This second arrangement is very useful for coating both sides of the substrate, such as antireflection multilayers on lenses. The design of static correcting shutters for both kinds of configurations is also discussed. Some results of using the method are presented as an illustration.
Resumo:
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
Resumo:
We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.
Resumo:
It is well known that radiative corrections evaluated in nontrivial backgrounds lead to effective dispersion relations which are not Lorentz invariant. Since gravitational interactions increase with energy, gravity-induced radiative corrections could be relevant for the trans-Planckian problem. As a first step to explore this possibility, we compute the one-loop radiative corrections to the self-energy of a scalar particle propagating in a thermal bath of gravitons in Minkowski spacetime. We obtain terms which originate from the thermal bath and which indeed break the Lorentz invariance that possessed the propagator in the vacuum. Rather unexpectedly, however, the terms which break Lorentz invariance vanish in the high three-momentum limit. We also found that the imaginary part, which gives the rate of approach to thermal equilibrium, vanishes at one loop.
Resumo:
Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays.Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes.
Resumo:
We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.
Resumo:
Breather stability and longevity in thermally relaxing nonlinear arrays depend sensitively on their interactions with other excitations. We review numerical results for the relaxation of breathers in Fermi¿Pasta¿Ulam arrays, with a specific focus on the different relaxation channels and their dependence on the interparticle interactions, dimensionality, initial condition, and system parameters