20 resultados para TRIETHYLSILYL CATIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of hydrochemical characteristics of the Arbúcies river (a seminatural mediterranean basin) has been undertaken during 1991. Mean solute yield for each ion has been determined using the correlation curves between discharge and concentration, and the flow duration curve. The hydrochemical budget of the Arbúcies drainage basin shows that the basin is a net source for al1 the elements. The cationic denudation rate obtained in this granitic basin is 5.24 keqhalyear. This high rate is due to the intensive chemical weathering of the granodionte, that delivers an important amount of cations which will release to be transported. The results demostrate clearly the strength of lithological control on stream loads, particulary on the dissolved component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form) in non-aqueous media. The anion loading of the AER (OH− form) was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form) method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7) and the anion exchange was equally successful with both lipophilic cations and anions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-stranded DNA (ssDNA) plays a major role in several biological processes. It is therefore of fundamental interest to understand how the elastic response and the formation of secondary structures are modulated by the interplay between base pairing and electrostatic interactions. Here we measure force-extension curves (FECs) of ssDNA molecules in optical tweezers set up over two orders of magnitude of monovalent and divalent salt conditions, and obtain its elastic parameters by fitting the FECs to semiflexible models of polymers. For both monovalent and divalent salts, we find that the electrostatic contribution to the persistence length is proportional to the Debye screening length, varying as the inverse of the square root of cation concentration. The intrinsic persistence length is equal to 0.7 nm for both types of salts, and the effectivity of divalent cations in screening electrostatic interactions appears to be 100-fold as compared with monovalent salt, in line with what has been recently reported for single-stranded RNA. Finally, we propose an analysis of the FECs using a model that accounts for the effective thickness of the filament at low salt condition and a simple phenomenological description that quantifies the formation of non-specific secondary structure at low forces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form) in non-aqueous media. The anion loading of the AER (OH− form) was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form) method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7) and the anion exchange was equally successful with both lipophilic cations and anions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-stranded DNA (ssDNA) plays a major role in several biological processes. It is therefore of fundamental interest to understand how the elastic response and the formation of secondary structures are modulated by the interplay between base pairing and electrostatic interactions. Here we measure force-extension curves (FECs) of ssDNA molecules in optical tweezers set up over two orders of magnitude of monovalent and divalent salt conditions, and obtain its elastic parameters by fitting the FECs to semiflexible models of polymers. For both monovalent and divalent salts, we find that the electrostatic contribution to the persistence length is proportional to the Debye screening length, varying as the inverse of the square root of cation concentration. The intrinsic persistence length is equal to 0.7 nm for both types of salts, and the effectivity of divalent cations in screening electrostatic interactions appears to be 100-fold as compared with monovalent salt, in line with what has been recently reported for single-stranded RNA. Finally, we propose an analysis of the FECs using a model that accounts for the effective thickness of the filament at low salt condition and a simple phenomenological description that quantifies the formation of non-specific secondary structure at low forces.