41 resultados para Systems of nonlinear equations
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
A general reduced dimensionality finite field nuclear relaxation method for calculating vibrational nonlinear optical properties of molecules with large contributions due to anharmonic motions is introduced. In an initial application to the umbrella (inversion) motion of NH3 it is found that difficulties associated with a conventional single well treatment are overcome and that the particular definition of the inversion coordinate is not important. Future applications are described
Resumo:
X-ray diffraction analyses of the pure components n-tricosane and n-pentacosane and of their binary mixed samples have enabled us to characterize the crystalline phases observed at low temperature. On the contrary to what was announced in literature on the structural behavior of mixed samples in odd-odd binary systems with D n = 2, the three domains are not all orthorhombic. This work has enabled us to show that two of the domains are, in fact, monoclinic, (Aa, Z = 4) and the other one is orthorhombic (Pca21, Z = 4). The conclusions drawn in this work can be easily transposed to other binary systems of n-alkanes.
Resumo:
The general theory of nonlinear relaxation times is developed for the case of Gaussian colored noise. General expressions are obtained and applied to the study of the characteristic decay time of unstable states in different situations, including white and colored noise, with emphasis on the distributed initial conditions. Universal effects of the coupling between colored noise and random initial conditions are predicted.
Resumo:
A parametric procedure for the blind inversion of nonlinear channels is proposed, based on a recent method of blind source separation in nonlinear mixtures. Experiments show that the proposed algorithms perform efficiently, even in the presence of hard distortion. The method, based on the minimization of the output mutual information, needs the knowledge of log-derivative of input distribution (the so-called score function). Each algorithm consists of three adaptive blocks: one devoted to adaptive estimation of the score function, and two other blocks estimating the inverses of the linear and nonlinear parts of the channel, (quasi-)optimally adapted using the estimated score functions. This paper is mainly concerned by the nonlinear part, for which we propose two parametric models, the first based on a polynomial model and the second on a neural network, while [14, 15] proposed non-parametric approaches.
Resumo:
Treball de recerca realitzat per un alumne d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. La programació al servei de la matemàtica és un programa informàtic fet amb Excel i Visual Basic. Resol equacions de primer grau, equacions de segon grau, sistemes d'equacions lineals de dues equacions i dues incògnites, sistemes d'equacions lineals compatibles determinats de tres equacions i tres incògnites i troba zeros de funcions amb el teorema de Bolzano. En cadascun dels casos, representa les solucions gràficament. Per a això, en el treball s'ha hagut de treballar, en matemàtiques, amb equacions, nombres complexos, la regla de Cramer per a la resolució de sistemes, i buscar la manera de programar un mètode iteratiu pel teorema de Bolzano. En la part gràfica, s'ha resolt com fer taules de valors amb dues i tres variables i treballar amb rectes i plans. Per la part informàtica, s'ha emprat un llenguatge nou per l'alumne i, sobretot, ha calgut saber decidir on posar una determinada instrucció, ja que el fet de variar-ne la posició una sola línea ho pot canviar tot. A més d'això, s'han resolt altres problemes de programació i també s'ha realitzat el disseny de pantalles.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la School of Mathematics and Statistics de la University of Plymouth, United Kingdom, entre abril juliol del 2007.Aquesta investigació és encara oberta i la memòria que presento constitueix un informe de la recerca que estem duent a terme actualment. En aquesta nota estudiem els centres isòcrons dels sistemes Hamiltonians analítics, parant especial atenció en el cas polinomial. Ens centrem en els anomenats quadratic-like Hamiltonian systems. Diverses propietats dels centres isòcrons d'aquest tipus de sistemes van ser donades a [A. Cima, F. Mañosas and J. Villadelprat, Isochronicity for several classes of Hamiltonian systems, J. Di®erential Equations 157 (1999) 373{413]. Aquell article estava centrat principalment en el cas en que A; B i C fossin funcions analítiques. El nostre objectiu amb l'estudi que estem duent a terme és investigar el cas en el que aquestes funcions són polinomis. En aquesta nota formulem una conjectura concreta sobre les propietats algebraiques que venen forçades per la isocronia del centre i provem alguns resultats parcials.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This is also achieved for some systems of HRD (i.e., time-delayed Lotka-Volterra) equations that take into account the interaction among different species. An analytical analysis is performed for several systems of biological interest, and we find good agreement with the results of numerical simulations as well as with available observations for a system discussed recently
Resumo:
A variational method for Hamiltonian systems is analyzed. Two different variationalcharacterization for the frequency of nonlinear oscillations is also suppliedfor non-Hamiltonian systems
Resumo:
The Lorentz-Dirac equation is not an unavoidable consequence of solely linear and angular momenta conservation for a point charge. It also requires an additional assumption concerning the elementary character of the charge. We here use a less restrictive elementarity assumption for a spinless charge and derive a system of conservation equations that are not properly the equation of motion because, as it contains an extra scalar variable, the future evolution of the charge is not determined. We show that a supplementary constitutive relation can be added so that the motion is determined and free from the troubles that are customary in the Lorentz-Dirac equation, i.e., preacceleration and runaways.
Resumo:
We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.
Resumo:
Critical exponents of the infinitely slowly driven Zhang model of self-organized criticality are computed for d=2 and 3, with particular emphasis devoted to the various roughening exponents. Besides confirming recent estimates of some exponents, new quantities are monitored, and their critical exponents computed. Among other results, it is shown that the three-dimensional exponents do not coincide with the Bak-Tang-Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] (Abelian) model, and that the dynamical exponent as computed from the correlation length and from the roughness of the energy profile do not necessarily coincide, as is usually implicitly assumed. An explanation for this is provided. The possibility of comparing these results with those obtained from renormalization group arguments is also briefly addressed.
Resumo:
Given the urgence of a new paradigm in wireless digital trasmission which should allow for higher bit rate, lower latency and tigher delay constaints, it has been proposed to investigate the fundamental building blocks that at the circuital/device level, will boost the change towards a more efficient network architecture, with high capacity, higher bandwidth and a more satisfactory end user experience. At the core of each transciever, there are inherently analog devices capable of providing the carrier signal, the oscillators. It is strongly believed that many limitations in today's communication protocols, could be relieved by permitting high carrier frequency radio transmission, and having some degree of reconfigurability. This led us to studying distributed oscillator architectures which work in the microwave range and possess wideband tuning capability. As microvave oscillators are essentially nonlinear devices, a full nonlinear analyis, synthesis, and optimization had to be considered for their implementation. Consequently, all the most used nonlinear numerical techniques in commercial EDA software had been reviewed. An application of all the aforementioned techniques has been shown, considering a systems of three coupled oscillator ("triple push" oscillator) in which the stability of the various oscillating modes has been studied. Provided that a certain phase distribution is maintained among the oscillating elements, this topology permits a rise in the output power of the third harmonic; nevertheless due to circuit simmetry, "unwanted" oscillating modes coexist with the intenteded one. Starting with the necessary background on distributed amplification and distributed oscillator theory, the design of a four stage reverse mode distributed voltage controlled oscillator (DVCO) using lumped elments has been presented. All the design steps have been reported and for the first time a method for an optimized design with reduced variations in the output power has been presented. Ongoing work is devoted to model a wideband DVCO and to implement a frequency divider.