52 resultados para Structural Components
Resumo:
Nota: Aquest document conté originàriament altre material i/o programari només consultable a la Biblioteca de Ciència i Tecnologia.
Resumo:
We use a dynamic factor model to provide a semi-structural representation for 101 quarterly US macroeconomic series. We find that (i) the US economy is well described by a number of structural shocks between two and six. Focusing on the four-shock specification, we identify, using sign restrictions, two non-policy shocks, demand and supply, and two policy shocks, monetary and fiscal. We obtain the following results. (ii) Both supply and demand shocks are important sources of fluctuations; supply prevails for GDP, while demand prevails for employment and inflation. (ii) Policy matters, Both monetary and fiscal policy shocks have sizeable effects on output and prices, with little evidence of crowding out; both monetary and fiscal authorities implement important systematic countercyclical policies reacting to demand shocks. (iii) Negative demand shocks have a large long-run positive effect on productivity, consistently with the Schumpeterian "cleansing" view of recessions.
Resumo:
We derive necessary and sufficient conditions under which a set of variables is informationally sufficient, i.e. it contains enough information to estimate the structural shocks with a VAR model. Based on such conditions, we suggest a procedure to test for informational sufficiency. Moreover, we show how to amend the VAR if informational sufficiency is rejected. We apply our procedure to a VAR including TFP, unemployment and per-capita hours worked. We find that the three variables are not informationally sufficient. When adding missing information, the effects of technology shocks change dramatically.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Universidad Politécnica de Madrid, Espanya, entre setembre i o desembre del 2007. Actualment la indústria aeroespacial i aeronàutica té com prioritat millorar la fiabilitat de las seves estructures a través del desenvolupament de nous sistemes per a la monitorització i detecció d’impactes. Hi ha diverses tècniques potencialment útils, i la seva aplicabilitat en una situació particular depèn críticament de la mida del defecte que permet l’estructura. Qualsevol defecte canviarà la resposta vibratòria de l’element estructural, així com el transitori de l’ona que es propaga per l’estructura elàstica. Correlacionar aquests canvis, que poden ser detectats experimentalment amb l’ocurrència del defecte, la seva localització i quantificació, és un problema molt complex. Aquest treball explora l’ús de l'Anàlisis de Components Principals (Principal Component Analysis - PCA-) basat en la formulació dels estadístics T2 i Q per tal de detectar i distingir els defectes a l'estructura, tot correlacionant els seus canvis a la resposta vibratòria. L’estructura utilitzada per l’estudi és l’ala d’una turbina d’un avió comercial. Aquesta ala s’excita en un extrem utilitzant un vibrador, i a la qual s'han adherit set sensors PZT a la superfície. S'aplica un senyal conegut i s'analitzen les respostes. Es construeix un model PCA utilitzant dades de l’estructura sense defecte. Per tal de provar el model, s'adhereix un tros d’alumini en quatre posicions diferents. Les dades dels assajos de l'estructura amb defecte es projecten sobre el model. Les components principals i les distàncies de Q-residual i T2-Hotelling s'utilitzaran per a l'anàlisi de les incidències. Q-residual indica com de bé s'adiu cadascuna de les mostres al model PCA, ja que és una mesura de la diferència, o residu, entre la mostra i la seva projecció sobre les components principals retingudes en el model. La distància T2-Hotelling és una mesura de la variació de cada mostra dins del model PCA, o el que vindria a ser el mateix, la distància al centre del model PCA.
Resumo:
Memòria de creació d'un comerç online dedicat a la comercialització de components d'alta fidelitat i cinema a casa.
Resumo:
This study examines how structural determinants influence intermediary factors of child health inequities and how they operate through the communities where children live. In particular, we explore individual, family and community level characteristics associated with a composite indicator that quantitatively measures intermediary determinants of early childhood health in Colombia. We use data from the 2010 Colombian Demographic and Health Survey (DHS). Adopting the conceptual framework of the Commission on Social Determinants of Health (CSDH), three dimensions related to child health are represented in the index: behavioural factors, psychosocial factors and health system. In order to generate the weight of the variables and take into account the discrete nature of the data, principal component analysis (PCA) using polychoric correlations are employed in the index construction. Weighted multilevel models are used to examine community effects. The results show that the effect of household’s SES is attenuated when community characteristics are included, indicating the importance that the level of community development may have in mediating individual and family characteristics. The findings indicate that there is a significant variance in intermediary determinants of child health between-community, especially for those determinants linked to the health system, even after controlling for individual, family and community characteristics. These results likely reflect that whilst the community context can exert a greater influence on intermediary factors linked directly to health, in the case of psychosocial factors and the parent’s behaviours, the family context can be more important. This underlines the importance of distinguishing between community and family intervention programmes.
Predicting random level and seasonality of hotel prices. A structural equation growth curve approach
Resumo:
This article examines the effect on price of different characteristics of holiday hotels in the sun-and-beach segment, under the hedonic function perspective. Monthly prices of the majority of hotels in the Spanish continental Mediterranean coast are gathered from May to October 1999 from the tour operator catalogues. Hedonic functions are specified as random-effect models and parametrized as structural equation models with two latent variables, a random peak season price and a random width of seasonal fluctuations. Characteristics of the hotel and the region where they are located are used as predictors of both latent variables. Besides hotel category, region, distance to the beach, availability of parking place and room equipment have an effect on peak price and also on seasonality. 3- star hotels have the highest seasonality and hotels located in the southern regions the lowest, which could be explained by a warmer climate in autumn
Resumo:
Interaction effects are usually modeled by means of moderated regression analysis. Structural equation models with non-linear constraints make it possible to estimate interaction effects while correcting formeasurement error. From the various specifications, Jöreskog and Yang's(1996, 1998), likely the most parsimonious, has been chosen and further simplified. Up to now, only direct effects have been specified, thus wasting much of the capability of the structural equation approach. This paper presents and discusses an extension of Jöreskog and Yang's specification that can handle direct, indirect and interaction effects simultaneously. The model is illustrated by a study of the effects of an interactive style of use of budgets on both company innovation and performance
Resumo:
Entrevista en Lluís Oliver, químic gironí
Resumo:
In human Population Genetics, routine applications of principal component techniques are oftenrequired. Population biologists make widespread use of certain discrete classifications of humansamples into haplotypes, the monophyletic units of phylogenetic trees constructed from severalsingle nucleotide bimorphisms hierarchically ordered. Compositional frequencies of the haplotypesare recorded within the different samples. Principal component techniques are then required as adimension-reducing strategy to bring the dimension of the problem to a manageable level, say two,to allow for graphical analysis.Population biologists at large are not aware of the special features of compositional data and normally make use of the crude covariance of compositional relative frequencies to construct principalcomponents. In this short note we present our experience with using traditional linear principalcomponents or compositional principal components based on logratios, with reference to a specificdataset
Resumo:
The classical statistical study of the wind speed in the atmospheric surface layer is madegenerally from the analysis of the three habitual components that perform the wind data,that is, the component W-E, the component S-N and the vertical component,considering these components independent.When the goal of the study of these data is the Aeolian energy, so is when wind isstudied from an energetic point of view and the squares of wind components can beconsidered as compositional variables. To do so, each component has to be divided bythe module of the corresponding vector.In this work the theoretical analysis of the components of the wind as compositionaldata is presented and also the conclusions that can be obtained from the point of view ofthe practical applications as well as those that can be derived from the application ofthis technique in different conditions of weather
Resumo:
A recent study defines a new network plane: the knowledge plane. The incorporation of the knowledge plane over the network allows having more accurate information of the current and future network states. In this paper, the introduction and management of the network reliability information in the knowledge plane is proposed in order to improve the quality of service with protection routing algorithms in GMPLS over WDM networks. Different experiments prove the efficiency and scalability of the proposed scheme in terms of the percentage of resources used to protect the network
Resumo:
Process supervision is the activity focused on monitoring the process operation in order to deduce conditions to maintain the normality including when faults are present Depending on the number/distribution/heterogeneity of variables, behaviour situations, sub-processes, etc. from processes, human operators and engineers do not easily manipulate the information. This leads to the necessity of automation of supervision activities. Nevertheless, the difficulty to deal with the information complicates the design and development of software applications. We present an approach called "integrated supervision systems". It proposes multiple supervisors coordination to supervise multiple sub-processes whose interactions permit one to supervise the global process
Resumo:
La qualitat d’un producte elaborat és un factor important, tant pels consumidors, com pels òrgans reguladors que en defineixen normatives cada cop més estrictes. Iniciatives com la del PAT (Process Analytical Technology) en el sector farmacèutic, responen a aquestes necessitats. El PAT afavoreix la implantació de noves tècniques analítiques que facilitin el monitoratge i el control de paràmetres clau in-/on-line durant els processos de producció. En aquest sentit, el NIR-CI (Near Infrarred-Chemical Imaging) podria ser una eina molt útil en la millora de la qualitat de la indústria farmacèutica, ja que aprofita les avantatges del NIR com a tècnica analítica (ràpid, no invasiu, no destructiu) i les aplica a tota la superfície espacial de la mostra. És una tècnica capaç de proporcionar una gran quantitat d’informació, tant espectral com espacial, en una sola imatge. L’objectiu d’aquest treball és avaluar la capacitat de la tècnica NIR-CI, com a eina pel control de paràmetres de qualitat de comprimits farmacèutics. Concretament, s’han analitzat quantitativament la concentració i la distribució dels components (principi actiu i excipients) d’un comprimit farmacèutic amb i sense recobriment. A més, també s’ha determinat el gruix de la pel·lícula de laca de recobriment i la seva distribució a la superfície del comprimit. Per obtenir aquesta informació, es parteix d’imatges NIR-CI hiperespectrals dels comprimits. Per a l’extracció de les dades d’interès s’ha usat l’algoritme PLS en les diferents versions dels softwares Isys 5.0 i Unscrambler 9.8. La versió de l’Isys permet determinar la contribució de cada component pur a cada punt de la imatge, emprant únicament l’espectre del component en estudi. Amb la de l’Unscrambler, en canvi, es construeix un model de calibratge que, a partir d’unes mostres de referència, prediu la distribució del gruix de recobriment sobre la superfície del comprimit.
Resumo:
This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage