27 resultados para Stress and deformation
Resumo:
Background While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations. Results In this work we show that YHR087W expression is regulated by several transcription factors depending on the particular stress condition, and Hot1p is particularly relevant for the induction at high glucose concentrations. In this situation, Hot1p, together to Sko1p, binds to YHR087W promoter in a Hog1p-dependent manner. Several evidences obtained indicate Yhr087wp"s role in translation. Firstly, and according to TAP purification experiments, it interacts with proteins involved in translation initiation. Besides, its deletion mutant shows growth defects in the presence of translation inhibitors and displays a slightly slower translation recovery after applying high glucose stress than the wild type strain. Analyses of the association of mRNAs to polysome fractions reveals a lower translation in the mutant strain of the mRNAs corresponding to genes GPD1, HSP78 and HSP104. Conclusions The data demonstrates that expression of Yhr087wp under high glucose concentration is controlled by Hot1p and Sko1p transcription factors, which bind to its promoter. Yhr087wp has a role in translation, maybe in the control of the synthesis of several stress response proteins, which could explain the lower levels of some of these proteins found in previous proteomic analyses and the growth defects of the deletion strain. Keywords: Saccharomyces cerevisiae; High glucose osmotic stress; Gene YHR087W; Gene expression; Translation; Hot1p; Hog1p; Polysomes
Resumo:
Conflicts are inherent to the human condition, as they are for all living beings. Disputes about resources or access to mating partners are among the most common causes of conflict. Conflict is herein defined as a struggle or contest between individuals or parties, and may involve a variety of aggressive behaviours. In humans, aggressiveness, violence and conflicts, including individual predisposal to conflict resolution, have traditionally been said to have deep cultural roots, but recent research in both neuroscience and genetics has shown the influence of genes on such complex behavioural traits. In this paper, recent data on the genetic aspects of these interrelated behaviours will be put together, including the effects of particular genes, the influence of stress and gender on gene regulation, and gene-environment interactions, all of which may influence biological predisposal to conflict resolution. Other genetically influenced behavioural aspects involved in conflicts and conflict resolution, such as sociability, will also be discussed. The importance of taking into account genetic and biological data to provide strategies for conflict resolution will be highlighted.
Resumo:
Background: How do listeners manage to recognize words in an unfamiliar language? The physical continuity of the signal, in which real silent pauses between words are lacking, makes it a difficult task. However, there are multiple cues that can be exploited to localize word boundaries and to segment the acoustic signal. In the present study, word-stress was manipulated with statistical information and placed in different syllables within trisyllabic nonsense words to explore the result of the combination of the cues in an online word segmentation task. Results: The behavioral results showed that words were segmented better when stress was placed on the final syllables than when it was placed on the middle or first syllable. The electrophysiological results showed an increase in the amplitude of the P2 component, which seemed to be sensitive to word-stress and its location within words. Conclusion: The results demonstrated that listeners can integrate specific prosodic and distributional cues when segmenting speech. An ERP component related to word-stress cues was identified: stressed syllables elicited larger amplitudes in the P2 component than unstressed ones.
Resumo:
Neurodevelopmental disruptions caused by obstetric complications play a role in the etiology of several phenotypes associated with neuropsychiatric diseases and cognitive dysfunctions. Importantly, it has been noticed that epigenetic processes occurring early in life may mediate these associations. Here, DNA methylation signatures at IGF2 (insulin-like growth factor 2) and IGF2BP1-3 (IGF2-binding proteins 1-3) were examined in a sample consisting of 34 adult monozygotic (MZ) twins informative for obstetric complications and cognitive performance. Multivariate linear regression analysis of twin data was implemented to test for associations between methylation levels and both birth weight (BW) and adult working memory (WM) performance. Familial and unique environmental factors underlying these potential relationships were evaluated. A link was detected between DNA methylation levels of two CpG sites in the IGF2BP1 gene and both BW and adult WM performance. The BW-IGF2BP1 methylation association seemed due to non-shared environmental factors influencing BW, whereas the WM-IGF2BP1 methylation relationship seemed mediated by both genes and environment. Our data is in agreement with previous evidence indicating that DNA methylation status may be related to prenatal stress and later neurocognitive phenotypes. While former reports independently detected associations between DNA methylation and either BW or WM, current results suggest that these relationships are not confounded by each other.
Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction
Resumo:
Although the mechanisms of nodule N2 fixation in legumes are now well documented, some uncertainty remains on the metabolic consequences of water deficit. In most cases, little consideration is given to other organs and, therefore, the coordinated changes in metabolism in leaves, roots, and nodules are not well known. Here, the effect of water restriction on exclusively N2-fixing alfalfa (Medicago sativa L.) plants was investigated, and proteomic, metabolomic, and physiological analyses were carried out. It is shown that the inhibition of nitrogenase activity caused by water restriction was accompanied by concerted alterations in metabolic pathways in nodules, leaves, and roots. The data suggest that nodule metabolism and metabolic exchange between plant organs nearly reached homeostasis in asparagine synthesis and partitioning, as well as the N demand from leaves. Typically, there was (i) a stimulation of the anaplerotic pathway to sustain the provision of C skeletons for amino acid (e.g. glutamate and proline) synthesis; (ii) re-allocation of glycolytic products to alanine and serine/glycine; and (iii) subtle changes in redox metabolites suggesting the implication of a slight oxidative stress. Furthermore, water restriction caused little change in both photosynthetic efficiency and respiratory cost of N2 fixation by nodules. In other words, the results suggest that under water stress, nodule metabolism follows a compromise between physiological imperatives (N demand, oxidative stress) and the lower input to sustain catabolism.
Resumo:
The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN.
Resumo:
Understanding nanomaterial interactions within cells is of increasing importance for assessing their toxicity and cellular transport. Here, we developed nanovesicles containing bioactive cationic lysine-based amphiphiles, and assessed whether these cationic compounds increase the likelihood of intracellular delivery and modulate toxicity. We found different cytotoxic responses among the formulations, depending on surfactant, cell line and endpoint assayed. The induction of mitochondrial dysfunction, oxidative stress and apoptosis were the general mechanisms underlying cytotoxicity. Fluorescence microscopy analysis demonstrated that nanovesicles were internalized by HeLa cells, and evidenced that their ability to release endocytosed materials into cell cytoplasm depends on the structural parameters of amphiphiles. The cationic charge position and hydrophobicity of surfactants determine the nanovesicle interactions within the cell and, thus, the resulting toxicity and intracellular behavior after cell uptake of the nanomaterial. The insights into some toxicity mechanisms of these new nanomaterials contribute to reducing the uncertainty surrounding their potential health hazards.
Resumo:
Antioxidant enzymes are involved in important processes of cell detoxification during oxidative stress and have, therefore, been used as biomarkers in algae. Nevertheless, their limited use in fluvial biofilms may be due to the complexity of such communities. Here, a comparison between different extraction methods was performed to obtain a reliable method for catalase extraction from fluvial biofilms. Homogenization followed by glass bead disruption appeared to be the best compromise for catalase extraction. This method was then applied to a field study in a metal-polluted stream (Riou Mort, France). The most polluted sites were characterized by a catalase activity 4–6 times lower than in the low-polluted site. Results of the comparison process and its application are promising for the use of catalase activity as an early warning biomarker of toxicity using biofilms in the laboratory and in the field
Resumo:
We introduce a new notion for the deformation of Gabor systems. Such deformations are in general nonlinear and, in particular, include the standard jitter error and linear deformations of phase space. With this new notion we prove a strong deformation result for Gabor frames and Gabor Riesz sequences that covers the known perturbation and deformation results. Our proof of the deformation theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It is in the style of Beurling's characterization of sets of sampling for bandlimited functions and extends significantly the known characterization of Gabor frames 'without inequalities' from lattices to non-uniform sets.
Resumo:
Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ('ORCHIDEE'), and the other a forest growth model particularly developed for Mediterranean simulations ('GOTILWA+'), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.
Resumo:
Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.
Resumo:
Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.