45 resultados para Stream measurements.
Resumo:
Optimal and finite positive operator valued measurements on a finite number N of identically prepared systems have recently been presented. With physical realization in mind, we propose here optimal and minimal generalized quantum measurements for two-level systems. We explicitly construct them up to N = 7 and verify that they are minimal up to N = 5.
Resumo:
We present the dynamic velocity profiles of a Newtonian fluid (glycerol) and a viscoelastic Maxwell fluid (CPyCl-NaSal in water) driven by an oscillating pressure gradient in a vertical cylindrical pipe. The frequency range explored has been chosen to include the first three resonance peaks of the dynamic permeability of the viscoelastic-fluid¿pipe system. Three different optical measurement techniques have been employed. Laser Doppler anemometry has been used to measure the magnitude of the velocity at the center of the liquid column. Particle image velocimetry and optical deflectometry are used to determine the velocity profiles at the bulk of the liquid column and at the liquid-air interface respectively. The velocity measurements in the bulk are in good agreement with the theoretical predictions of a linear theory. The results, however, show dramatic differences in the dynamic behavior of Newtonian and viscoelastic fluids, and demonstrate the importance of resonance phenomena in viscoelastic fluid flows, biofluids in particular, in confined geometries.
Resumo:
We report on the magneto-optical measurements of an epitaxial SrRuO3 film grown on SrTiO3 (0 0 1), which previously was determined to be single domain orientated by x-ray diffraction and Raman spectroscopy techniques. Our experiments reveal a large Kerr rotation, which reaches a maximum value of about 0.5° at low temperature. By measuring magnetic hysteresis loops at different temperatures, we determined the temperature dependence of the Kerr rotation in the polar configuration. Values of the anisotropic magnetoresistance ~ 20% have been measured. These values are remarkably higher than those of other metallic oxides such as manganites. This striking difference can be attributed to the strong spin-orbit interaction of the Ru 4d ion in the SrRuO3 compound.
Resumo:
The particle orientation in several Y-Fe2O3magnetic tapes has been quantitatively evaluated by using the data of both Mössbauer and hysteresis loop measurements performed in the three orthogonal directions. A texture function has been obtained as a development of real harmonics. The profile of the texture function gives the quality of the different magnetic tapes. A different degree of particle orientation at the surface of the tape is evidenced by means of conversion electron Mössbauer spectra.
Resumo:
We formulate a new mixing model to explore hydrological and chemical conditions under which the interface between the stream and catchment interface (SCI) influences the release of reactive solutes into stream water during storms. Physically, the SCI corresponds to the hyporheic/riparian sediments. In the new model this interface is coupled through a bidirectional water exchange to the conventional two components mixing model. Simulations show that the influence of the SCI on stream solute dynamics during storms is detectable when the runoff event is dominated by the infiltrated groundwater component that flows through the SCI before entering the stream and when the flux of solutes released from SCI sediments is similar to, or higher than, the solute flux carried by the groundwater. Dissolved organic carbon (DOC) and nitrate data from two small Mediterranean streams obtained during storms are compared to results from simulations using the new model to discern the circumstances under which the SCI is likely to control the dynamics of reactive solutes in streams. The simulations and the comparisons with empirical data suggest that the new mixing model may be especially appropriate for streams in which the periodic, or persistent, abrupt changes in the level of riparian groundwater exert hydrologic control on flux of biologically reactive fluxes between the riparian/hyporheic compartment and the stream water.
Resumo:
Leaf litter inputs and retention play an important role in ecosystem functioning in forested streams. We examined colonization of leaves by microbes (bacteria, fungi, and protozoa) and fauna in Fuirosos, an intermittent forested Mediterranean stream. Black poplar (Populus nigra) and plane (Platanus acerifolia) leaf packs were placed in the stream for 4 mo. We measured the biomasses and calculated the densities of bacteria, fungi, protozoa, meiofauna, and macroinvertebrates to determine their dynamics and potential interactions throughout the colonization process. Colonization was strongly correlated with hydrological variability (defined mainly by water temperature and discharge). The 1st week of colonization was characterized by hydrological stability and warm water temperatures, and allocation of C from microbial to invertebrate compartments on the leaf packs was rapid. Clumps of fine particulate organic matter (FPOM) were retained by the leaf packs, and enhanced rapid colonization by microfauna and meiofaunal collector-gatherers (ostracods and copepods). After 2 wk, an autumnal flood caused a 20-fold increase in water flow. Higher discharge and lower water temperature caused FPOM-related fauna to drift away from the packs and modified the subsequent colonization sequence. Fungi showed the highest biomass, with similar values to those recorded at the beginning of the experiment. After 70 d of postflood colonization, fungi decreased to nearly 40% of the total C in the leaf packs, whereas invertebrates became more abundant and accounted for 60% of the C. Natural flood occurrence in Mediterranean streams could be a key factor in the colonization and processing of organic matter.
Resumo:
Sediment-water exchanges of oxygen, ammonium, nitrate, total dissolved nitrogen, phosphate and total dissolved phosphorus were measured by means of an in situ incubator of 7 1 volume and 700 cm2 base area. The incubations lasted for three hours and were done over a whole season on different kinds of sediments in Alfaques Bay. We present some preliminary results on: i) methodological aspects, ii) spatial and temporal variability of fluxes, and iii) estimates of contribution of benthic nutrient regeneration relative to total nutrient loading of the Bay. Oxygen uptake averaged 1700 mmo1 m-2 h-1 (range 200-3500); no differences were found between sandy and muddy sediments. The release of ammonia from the sediment averaged 70 mmo1 m-2 h-1 and was higher in muddy sediments than in sandy ones. Very low to null nitrate and nitrite fluxes and only small fluxes of organic nitrogen were detected. We conclude that ammonium release from sediment is the major path of nitrogen regeneration. Some sediments removed dissolved reactive phosphorus (DRP) from the water and released dissolved organic phosphorus (DOP). Additional manipulative experiments revealed DRP release under particular conditions (turbulence, anoxia). From these data, we estimate that at least 50% of the nitrogen requirements of phytoplankton in the area may be supplied by benthic remineralization.
Resumo:
We examined the effects of riparian vegetation removal on algal dynamics and stream nutrient retention efficiency by comparing NH4-N and PO4-P uptake lengths from a logged and an unlogged reach in Riera Major, a forested Mediterranean stream in northeastern Spain. From June to September 1995, we executed 6 short-term additions of N (as NH4Cl) and P (as Na2HPO4) in a 200-m section to measure nutrient uptake lengths. The study site included 2 clearly differentiated reaches in terms of canopy cover by riparian trees: the first 100 m were completely logged (i.e., the logged reach) and the remaining 100 m were left intact (i.e., the shaded reach). Trees were removed from the banks of the logged reach in the winter previous to our sampling. In the shaded reach, riparian vegetation was dominated by alders (Alnus glutinosa). The study was conducted during summer and fall months when differences in light availability between the 2 reaches were greatest because of forest canopy conditions. Algal biomass and % of stream surface covered by algae were higher in the logged than in the shaded reach, indicating that logging had a stimulatory effect on algae in the stream. Overall, nutrient retention efficiency was higher (i.e., shorter uptake lengths) in the logged than in the shaded reach, especially for PO4-P. Despite a greater increase in PO4-P retention efficiency relative to that of NH4-N following logging, retention efficiency for NH4-N was higher than for PO4-P in both study reaches. The PO4-P mass-transfer coefficient was correlated with primary production in both study reaches, indicating that algal activity plays an important role in controlling PO4-P dynamics in this stream. In contrast, the NH4-N mass-transfer coefficient showed a positive relation-ship only with % of algal coverage in the logged reach, and was not correlated with any algal-related parameter in the shaded reach. The lack of correlation with algal production suggests that mechanisms other than algal activity (i.e., microbial heterotrophic processes or abiotic mechanisms) may also influence NH4-N retention in this stream. Overall, this study shows that logging disturbances in small shaded streams may alter in-stream ecological features that lead to changes in stream nutrient retention efficiency. Moreover, it emphasizes that alteration of the tight linkage between the stream channel and the adjacent riparian zone may directly and indirectly impact biogeochemical processes with implications for stream ecosystem functioning.
Resumo:
Recently a fingering morphology, resembling the hydrodynamic Saffman-Taylor instability, was identified in the quasi-two-dimensional electrodeposition of copper. We present here measurements of the dispersion relation of the growing front. The instability is accompanied by gravity-driven convection rolls at the electrodes, which are examined using particle image velocimetry. While at the anode the theory presented by Chazalviel et al. [J. Electroanal. Chem. 407, 61 (1996)] describes the convection roll, the flow field at the cathode is more complicated because of the growing deposit. In particular, the analysis of the orientation of the velocity vectors reveals some lag of the development of the convection roll compared to the finger envelope.
Resumo:
Actualment en el sector industrial, les organitzacions tenen el repte d'optimitzar els seus sistemes productius per a millorar en quant a preu, qualitat i nivell de servei i poder adaptar-se a les exigències dels clients (excel·lència productiva). El present anàlisi, es basa en l'optimització d'una cadena de producció de feltres insonoritzants per a l'automòbil a través de l'eliminació de les pèrdues existents (operacions que no aporten valor afegit al producte final). Per dur-ho a terme, la metodologia emprada és el Value Stream Map (VSM). El VSM és una tècnica desenvolupada sota el model de gestió de la producció Lean Manufacturing, molt visual i entenedora, permet visualitzar i entendre l'estat actual d'un procés. Aquesta, abarca a tota la organització, i te per objectiu recolzar-la en el procés de redisseny dels seus entorns productius per assolir un estat futur millor que possibiliti obtenir resultats en un periode curt de temps. L'objectiu principal de l'estudi, és aplicar l'eina VSM com a mètode per a l'eliminació de les mudes o malbarataments que impedeix la consecució d'una cadena Lean amb el cas concret d'un sistema productiu de feltres insonoritzants. En la primera part del projecte s'introdueix al lector en la teoria del pensament Lean (quins principis té i quins són els objectius) com a marc teòric. Aquí es detalla el procediment, així com les característiques per a la correcta elaboració del VSM actual, per al seu corresponent anàlisi i per a la seva representació del estat futur. En una segona part del projecte, s'exposen les etapes que constitueixen la cadena de producció d'estudi i es duu a terme l'elaboració del Value Stream Map, on es posen de manifest les ineficiències del flux que conformen la línia de producció. Per últim s'analitzen els fluxes, s'identifiquen les pèrdues de la cadena, i a partir d'aquests, es dissenyen i es proposen projectes i accions que permitin establir línies d'actuació per a un millor estat futur. L'estudi ha permés demostrar la validesa del VSM com a eina per a facilitar la consecució i assoliment de millores en la productivitat, competitivitat i rendibilitat dels diferents processos de l'organització en la línia de fabricació de feltres insonoritzats.