25 resultados para Star sigma-compact


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stability of nuclei beyond the drip lines in the presence of an enveloping gas of nucleons and electrons, as prevailing in the inner crust of a neutron star, is studied in the temperature-dependent Thomas-Fermi framework. A limiting asymmetry in the isospin space beyond which nuclei cannot exist emerges from the calculations. The ambient conditions such as temperature, baryon density, and neutrino concentration under which these exotic nuclear systems can be formed are studied in some detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new method of operating laser interferometric gravitational-wave detectors when observing chirps of gravitational radiation from coalescing compact binary stars. This technique consists of the use of narrow-band dual recycling to increase the signal but with the tuning frequency of the detector arranged to follow the frequency of a chirp. We consider the response of such an instrument to chirps, including the effect of inevitable errors in tracking. Different possible tuning strategies are discussed. Both the final signal-to-noise ratio and timing accuracy are evaluated and are shown to be significantly improved by the use of dynamic tuning. This should allow an accurate and reliable measurement of Hubble's constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal energy storage (TES) can increase the thermal energy effieresa, of a process by reusing the waste heat from industrial process, solar energy or other sources. There are different ways to store thermal energy: by sensible heat, by latest heat, by sorption process or by chemical reaction. This thesrs provides a-state-of-the-art review of the experimental performance of TES systems based on solid gas sorption process and chemical reactions. The importance of theses processes is that provides a heat loss free storage system with a high energy density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the ~80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (also known as HD 215227), although that was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of the Be star. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), reveals a black hole of 3.8 to 6.9 solar masses orbiting MWC 656, the candidate counterpart of the gamma-ray source AGL J2241+4454. The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 x 10-7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect by conventional X-ray surveys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy emitters (pulsars, blazars, supernova remnants, etc.), theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims: The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods: A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results: We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context.Massive stars form in dense and massive molecular cores. The exact formation mechanism is unclear, but it is possible that some massive stars are formed by processes similar to those that produce the low-mass stars, with accretion/ejection phenomena occurring at some point of the evolution of the protostar. This picture seems to be supported by the detection of a collimated stellar wind emanating from the massive protostar IRAS 16547-4247. A triple radio source is associated with the protostar: a compact core and two radio lobes. The emission of the southern lobe is clearly non-thermal. Such emission is interpreted as synchrotron radiation produced by relativistic electrons locally accelerated at the termination point of a thermal jet. Since the ambient medium is determined by the properties of the molecular cloud in which the whole system is embedded, we can expect high densities of particles and infrared photons. Because of the confirmed presence of relativistic electrons, inverse Compton and relativistic Bremsstrahlung interactions are unavoidable. Aims.We aim to make quantitative predictions of the spectral energy distribution of the non-thermal spots generated by massive young stellar objects, with emphasis on the particular case of IRAS 16547-4247. Methods.We study the high-energy emission generated by the relativistic electrons which produce the non-thermal radio source in IRAS 16547-4247. We also study the result of proton acceleration at the terminal shock of the thermal jet and make estimates of the secondary gamma rays and electron-positron pairs produced by pion decay. Results.We present spectral energy distributions for the southern lobe of IRAS 16547-4247, for a variety of conditions. We show that high-energy emission might be detectable from this object in the gamma-ray domain. The source may also be detectable in X-rays through long exposures with current X-ray instruments. Conclusions.Gamma-ray telescopes such as GLAST, and even ground-based Cherenkov arrays of new generation can be used to study non-thermal processes occurring during the formation of massive stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new optical and infrared photometric observations and high resolution H α spectra of the periodic radio star LSI+61◦303. The optical photometric data set covers the time interval 1985-1993 and amounts to about a hundred nights. A period of ∼26 days is found in the V band. The infrared data also present evidence for a similar periodicity, but with higher amplitude of variation ((0.m 2). The spectroscopic observations include 16 intermediate and high dispersion spectra of LSI+61◦303 collected between January 1989 and February 1993. The H α emission line profile and its variations are analyzed. Several emission line parameters -- among them the H α EW and the width of the H α red hump -- change strongly at or close to radio maximum, and may exhibit periodic variability. We also observe a significant change in the peak separation. The H α profile of LSI+61◦303 does not seem peculiar for a Be star. However, several of the observed variations of the H α profile can probably be associated with the presence of the compact, secondary star.