80 resultados para Spatial econometrics
Resumo:
Projecte de recerca elaborat a partir d’una estada a la National Oceanography Centre of Southampton (NOCS), Gran Bretanya, entre maig i juliol del 2006. La possibilitat d’obtenir una estimació precissa de la salinitat marina (SSS) és important per a investigar i predir l’extensió del fenòmen del canvi climàtic. La missió Soil Moisture and Ocean Salinity (SMOS) va ser seleccionada per l’Agència Espacial Europea (ESA) per a obtenir mapes de salinitat de la superfície marina a escala global i amb un temps de revisita petit. Abans del llençament de SMOS es preveu l’anàlisi de la variabilitat horitzontal de la SSS i del potencial de les dades recuperades a partir de mesures de SMOS per a reproduir comportaments oceanogràfics coneguts. L’objectiu de tot plegat és emplenar el buit existent entre les fonts de dades d’entrada/auxiliars fiables i les eines desenvolupades per a simular i processar les dades adquirides segons la configuració de SMOS. El SMOS End-to-end Performance Simulator (SEPS) és un simulador adhoc desenvolupat per la Universitat Politècnica de Catalunya (UPC) per a generar dades segons la configuració de SMOS. Es va utilitzar dades d’entrada a SEPS procedents del projecte Ocean Circulation and Climate Advanced Modeling (OCCAM), utilitzat al NOCS, a diferents resolucions espacials. Modificant SEPS per a poder fer servir com a entrada les dades OCCAM es van obtenir dades de temperatura de brillantor simulades durant un mes amb diferents observacions ascendents que cobrien la zona seleccionada. Les tasques realitzades durant l’estada a NOCS tenien la finalitat de proporcionar una tècnica fiable per a realitzar la calibració externa i per tant cancel•lar el bias, una metodologia per a promitjar temporalment les diferents adquisicions durant les observacions ascendents, i determinar la millor configuració de la funció de cost abans d’explotar i investigar les posibiltats de les dades SEPS/OCCAM per a derivar la SSS recuperada amb patrons d’alta resolució.
Resumo:
ABSTRACT The measure and estimation of income levels in Barcelona Metropolitan Area (BMA) goes back a long way. Using different approaches and focusing on different municipalities, there is a lot of work in the field. The majority of the literature has focused on the estimation of income levels using variables related to consumption. The empirical evidence on wage differentials has shown an important growth during 80’s and 90’s especially in United Kingdom and USA. Less is known on spatial distribution of inequality. This paper presents a new data set for analyzing spatial distribution of wage income. This data is obtained by matching Wage Structure Survey (WSS) with data from Census disaggregated by census tracts. In this way we have a unique data set with wage incomes for every census track for 36 municipalities belonging to BMA. We develop a descriptive analysis of spatial distribution, testing for spatial autocorrelation and use the family of Generalised Entropy Indices to measure inequality. Properties of the index allow us to decompose inequality into inter and intra-municipality measures. Since we have two cross-sectional data for WSS (1995-2002) we can also analyze the evolution of the inequality in this period of economic growth. Key words: spatial distribution of wages, spatial autocorrelation, inequality indices.
Resumo:
Empirical studies on the determinants of industrial location typically use variables measured at the available administrative level (municipalities, counties, etc.). However, this amounts to assuming that the effects these determinants may have on the location process do not extent beyond the geographical limits of the selected site. We address the validity of this assumption by comparing results from standard count data models with those obtained by calculating the geographical scope of the spatially varying explanatory variables using a wide range of distances and alternative spatial autocorrelation measures. Our results reject the usual practice of using administrative records as covariates without making some kind of spatial correction. Keywords: industrial location, count data models, spatial statistics JEL classification: C25, C52, R11, R30
Resumo:
Suburbanization is changing the urban spatial structure and less monocentric metropolitan regions are becoming the new urban reality. Focused only on centers, most works have studied these spatial changes neglecting the role of transport infrastructure and its related location model, the “accessibility city”, in which employment and population concentrate in low-density settlements and close to transport infrastructure. For the case of Barcelona, we consider this location model and study the population spatial structure between 1991 and 2006. The results reveal a mix between polycentricity and the accessibility city, with movements away from the main centers, but close to the transport infrastructure.
Resumo:
Transport costs in address models of differentiation are usually modeled as separable of the consumption commodity and with a parametric price. However, there are many sectors in an economy where such modeling is not satisfactory either because transportation is supplied under oligopolistic conditions or because there is a difference (loss) between the amount delivered at the point of production and the amount received at the point of consumption. This paper is a first attempt to tackle these issues proposing to study competition in spatial models using an iceberg-like transport cost technology allowing for concave and convex melting functions.
Resumo:
The aim of this paper is to analyse the colocation patterns of industries and firms. We study the spatial distribution of firms from different industries at a microgeographic level and from this identify the main reasons for this locational behaviour. The empirical application uses data from Mercantile Registers of Spanish firms (manufacturers and services). Inter-sectorial linkages are shown using self-organizing maps. Key words: clusters, microgeographic data, self-organizing maps, firm location JEL classification: R10, R12, R34
Resumo:
A version of Matheron’s discrete Gaussian model is applied to cell composition data.The examples are for map patterns of felsic metavolcanics in two different areas. Q-Qplots of the model for cell values representing proportion of 10 km x 10 km cell areaunderlain by this rock type are approximately linear, and the line of best fit can be usedto estimate the parameters of the model. It is also shown that felsic metavolcanics in theAbitibi area of the Canadian Shield can be modeled as a fractal
Resumo:
One of the criticisms leveled at the model of dispersed city found all over the world is its unarticulated, random, and undifferentiated nature. To check this idea in the Barcelona Metropolitan Region, we estimated the impact of the urban spatial structure (CBD, subcenters and transportation infrastructures) over the population density and commuting distance. The results are unfavorable to the hypothesis of the increasing destructuring of cities given that the explanatory capacity of both functions improves over time, both when other control variables are not included and when they are included.
Resumo:
A graphical processing unit (GPU) is a hardware device normally used to manipulate computer memory for the display of images. GPU computing is the practice of using a GPU device for scientific or general purpose computations that are not necessarily related to the display of images. Many problems in econometrics have a structure that allows for successful use of GPU computing. We explore two examples. The first is simple: repeated evaluation of a likelihood function at different parameter values. The second is a more complicated estimator that involves simulation and nonparametric fitting. We find speedups from 1.5 up to 55.4 times, compared to computations done on a single CPU core. These speedups can be obtained with very little expense, energy consumption, and time dedicated to system maintenance, compared to equivalent performance solutions using CPUs. Code for the examples is provided.
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocksbased on compositional statistics is introduced. It improves and generalizes the commonjoins-count statistics known from map analysis in geographic information systems.Assigning phases independently to objects in RD is modelled by a single-trial multinomialrandom function Z(x), where the probabilities of phases add to one and areexplicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistenciesof the tests based on the conventional joins{count statistics and their possiblycontradictory interpretations are avoided. In practical applications we assume that theprobabilities of phases do not depend on the location but are identical everywhere inthe domain of de nition. Thus, the model involves the sum of r independent identicalmultinomial distributed 1-trial random variables which is an r-trial multinomialdistributed random variable. The probabilities of the distribution of the r counts canbe considered as a composition in the Q-part simplex SQ. They span the so calledHardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This isa generalisation of the well-known Hardy-Weinberg law of genetics. If the assignmentof phases accounts for some kind of spatial dependence, then the r-trial probabilitiesdo not remain on H. This suggests the use of the Aitchison distance between observedprobabilities to H to test dependence. Moreover, when there is a spatial uctuation ofthe multinomial probabilities, the observed r-trial probabilities move on H. This shiftcan be used as to check for these uctuations. A practical procedure and an algorithmto perform the test have been developed. Some cases applied to simulated and realdata are presented.Key words: Spatial distribution of crystals in rocks, spatial distribution of phases,joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinbergmanifold, Aitchison geometry
Resumo:
Many terrestrial and marine systems are experiencing accelerating decline due to the effects of global change. This situation has raised concern about the consequences of biodiversity losses for ecosystem function, ecosystem service provision, and human well-being. Coastal marine habitats are a main focus of attention because they harbour a high biological diversity, are among the most productive systems of the world and present high anthropogenic interaction levels. The accelerating degradation of many terrestrial and marine systems highlights the urgent need to evaluate the consequence of biodiversity loss. Because marine biodiversity is a dynamic entity and this study was interested global change impacts, this study focused on benthic biodiversity trends over large spatial and long temporal scales. The main aim of this project was to investigate the current extent of biodiversity of the high diverse benthic coralligenous community in the Mediterranean Sea, detect its changes, and predict its future changes over broad spatial and long temporal scales. These marine communities are characterized by structural species with low growth rates and long life spans; therefore they are considered particularly sensitive to disturbances. For this purpose, this project analyzed permanent photographic plots over time at four locations in the NW Mediterranean Sea. The spatial scale of this study provided information on the level of species similarity between these locations, thus offering a solid background on the amount of large scale variability in coralligenous communities; whereas the temporal scale was fundamental to determine the natural variability in order to discriminate between changes observed due to natural factors and those related to the impact of disturbances (e.g. mass mortality events related to positive thermal temperatures, extreme catastrophic events). This study directly addressed the challenging task of analyzing quantitative biodiversity data of these high diverse marine benthic communities. Overall, the scientific knowledge gained with this research project will improve our understanding in the function of marine ecosystems and their trajectories related to global change.
Resumo:
A contemporary perspective on the tradeoff between transmit antenna diversity andspatial multiplexing is provided. It is argued that, in the context of most modern wirelesssystems and for the operating points of interest, transmission techniques that utilizeall available spatial degrees of freedom for multiplexing outperform techniques that explicitlysacrifice spatial multiplexing for diversity. In the context of such systems, therefore,there essentially is no decision to be made between transmit antenna diversity and spatialmultiplexing in MIMO communication. Reaching this conclusion, however, requires thatthe channel and some key system features be adequately modeled and that suitable performancemetrics be adopted; failure to do so may bring about starkly different conclusions. Asa specific example, this contrast is illustrated using the 3GPP Long-Term Evolution systemdesign.
Resumo:
Canonical correspondence analysis and redundancy analysis are two methods of constrained ordination regularly used in the analysis of ecological data when several response variables (for example, species abundances) are related linearly to several explanatory variables (for example, environmental variables, spatial positions of samples). In this report I demonstrate the advantages of the fuzzy coding of explanatory variables: first, nonlinear relationships can be diagnosed; second, more variance in the responses can be explained; and third, in the presence of categorical explanatory variables (for example, years, regions) the interpretation of the resulting triplot ordination is unified because all explanatory variables are measured at a categorical level.
Resumo:
In order to interpret the biplot it is necessary to know which points usually variables are the ones that are important contributors to the solution, and this information is available separately as part of the biplot s numerical results. We propose a new scaling of the display, called the contribution biplot, which incorporates this diagnostic directly into the graphical display, showing visually the important contributors and thus facilitating the biplot interpretation and often simplifying the graphical representation considerably. The contribution biplot can be applied to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. In the contribution biplot one set of points, usually the rows of the data matrix, optimally represent the spatial positions of the cases or sample units, according to some distance measure that usually incorporates some form of standardization unless all data are comparable in scale. The other set of points, usually the columns, is represented by vectors that are related to their contributions to the low-dimensional solution. A fringe benefit is that usually only one common scale for row and column points is needed on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot legible. Furthermore, this version of the biplot also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important, when they are in fact contributing minimally to the solution.