42 resultados para Solution blow spinning
Resumo:
We study under which conditions the core of a game involved in a convex decomposition of another game turns out to be a stable set of the decomposed game. Some applications and numerical examples, including the remarkable Lucas¿ five player game with a unique stable set different from the core, are reckoning and analyzed.
Resumo:
The propagator of a relativistic spinning particle is calculated using the Becchi-Rouet-Stora-Tyutin-(BRST)-invariant path-integral formalism of Fradkin and Vilkovisky. The spinless case is considered as an introduction to the formalism.
Resumo:
We have performed a detailed study of the zenith angle dependence of the regeneration factor and distributions of events at SNO and SK for different solutions of the solar neutrino problem. In particular, we discuss the oscillatory behavior and the synchronization effect in the distribution for the LMA solution, the parametric peak for the LOW solution, etc. A physical interpretation of the effects is given. We suggest a new binning of events which emphasizes the distinctive features of the zenith angle distributions for the different solutions. We also find the correlations between the integrated day-night asymmetry and the rates of events in different zenith angle bins. The study of these correlations strengthens the identification power of the analysis.
Resumo:
The pure classical content of a pseudoclassical nonrelativistic model of a spinning particle is studied. The only physical meaningful world line is the one without "Zitterbewegung." Interactions with external electromagnetic fields are also studied.
Resumo:
A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains two first-class constraints which after quantization give rise to the Levy-Leblond equation for a spin-1/2 particle.
Resumo:
A pseudoclassical model for a relativistic spinning particle is studied. The only physically meaningful world line is the one without Zitterbewegung. The Poincar realization for this situation is constructed.
Resumo:
We propose a definition of classical differential cross sections for particles with essentially nonplanar orbits, such as spinning ones. We give also a method for its computation. The calculations are carried out explicitly for electromagnetic, gravitational, and short-range scalar interactions up to the linear terms in the slow-motion approximation. The contribution of the spin-spin terms is found to be at best 10-6 times the post-Newtonian ones for the gravitational interaction.
Resumo:
The vacuum Einstein equations in five dimensions are shown to admit a solution describing a stationary asymptotically flat spacetime regular on and outside an event horizon of topology S1S2. It describes a rotating black ring. This is the first example of a stationary asymptotically flat vacuum solution with an event horizon of nonspherical topology. The existence of this solution implies that the uniqueness theorems valid in four dimensions do not have simple five-dimensional generalizations. It is suggested that increasing the spin of a spherical black hole beyond a critical value results in a transition to a black ring, which can have an arbitrarily large angular momentum for a given mass.
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Resumo:
Starting from the radiative transfer equation, we obtain an analytical solution for both the free propagator along one of the axes and an arbitrary phase function in the Fourier-Laplace domain. We also find the effective absorption parameter, which turns out to be very different from the one provided by the diffusion approximation. We finally present an analytical approximation procedure and obtain a differential equation that accurately reproduces the transport process. We test our approximations by means of simulations that use the Henyey-Greenstein phase function with very satisfactory results.
Resumo:
We show that the reflecting boundary condition for a one-dimensional telegraphers equation is the same as that for the diffusion equation, in contrast to what is found for the absorbing boundary condition. The radiation boundary condition is found to have a quite complicated form. We also obtain exact solutions of the telegraphers equation in the presence of these boundaries.
Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise
Resumo:
In a recent paper [Phys. Rev. Lett. 75, 189 (1995)] we have presented the exact analytical expression for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise out of a region (0,L) in space. In this paper we give a detailed account of the method employed and present results on asymptotic properties and averages of T(x,v).
Resumo:
A new spinning axis representation is introduced. It allows us to calculate the evolution operator of a system with slowly varying time dependent Hamiltonian with the desired degree of approximation in the parameter used for describing its dynamical evolution. The procedure is compared with a previously existing one and applied to a simple example.
Resumo:
In this paper we give some ideas that can be useful to solve Schrödinger equations in the case when the Hamiltonian contains a large term. We obtain an expansion of the solution in reciprocal powers of the large coupling constant. The procedure followed consists in considering that the small part of the Hamiltonian engenders a motion adiabatic to the motion generated by the large part of the same.
Resumo:
We characterize the Schatten class membership of the canonical solution operator to $\overline{\partial}$ acting on $L^2(e^{-2\phi})$, where $\phi$ is a subharmonic function with $\Delta\phi$ a doubling measure. The obtained characterization is in terms of $\Delta\phi$. As part of our approach, we study Hankel operators with anti-analytic symbols acting on the corresponding Fock space of entire functions in $L^2(e^{-2\phi})$