43 resultados para Simplex. CPLEXR. Parallel Efficiency. Parallel Scalability. Linear Programming
Resumo:
A recent study defines a new network plane: the knowledge plane. The incorporation of the knowledge plane over the network allows having more accurate information of the current and future network states. In this paper, the introduction and management of the network reliability information in the knowledge plane is proposed in order to improve the quality of service with protection routing algorithms in GMPLS over WDM networks. Different experiments prove the efficiency and scalability of the proposed scheme in terms of the percentage of resources used to protect the network
Resumo:
Revenue management practices often include overbooking capacity to account for customerswho make reservations but do not show up. In this paper, we consider the network revenuemanagement problem with no-shows and overbooking, where the show-up probabilities are specificto each product. No-show rates differ significantly by product (for instance, each itinerary andfare combination for an airline) as sale restrictions and the demand characteristics vary byproduct. However, models that consider no-show rates by each individual product are difficultto handle as the state-space in dynamic programming formulations (or the variable space inapproximations) increases significantly. In this paper, we propose a randomized linear program tojointly make the capacity control and overbooking decisions with product-specific no-shows. Weestablish that our formulation gives an upper bound on the optimal expected total profit andour upper bound is tighter than a deterministic linear programming upper bound that appearsin the existing literature. Furthermore, we show that our upper bound is asymptotically tightin a regime where the leg capacities and the expected demand is scaled linearly with the samerate. We also describe how the randomized linear program can be used to obtain a bid price controlpolicy. Computational experiments indicate that our approach is quite fast, able to scale to industrialproblems and can provide significant improvements over standard benchmarks.
Resumo:
Most research on single machine scheduling has assumedthe linearity of job holding costs, which is arguablynot appropriate in some applications. This motivates ourstudy of a model for scheduling $n$ classes of stochasticjobs on a single machine, with the objective of minimizingthe total expected holding cost (discounted or undiscounted). We allow general holding cost rates that are separable,nondecreasing and convex on the number of jobs in eachclass. We formulate the problem as a linear program overa certain greedoid polytope, and establish that it issolved optimally by a dynamic (priority) index rule,whichextends the classical Smith's rule (1956) for the linearcase. Unlike Smith's indices, defined for each class, ournew indices are defined for each extended class, consistingof a class and a number of jobs in that class, and yieldan optimal dynamic index rule: work at each time on a jobwhose current extended class has larger index. We furthershow that the indices possess a decomposition property,as they are computed separately for each class, andinterpret them in economic terms as marginal expected cost rate reductions per unit of expected processing time.We establish the results by deploying a methodology recentlyintroduced by us [J. Niño-Mora (1999). "Restless bandits,partial conservation laws, and indexability. "Forthcomingin Advances in Applied Probability Vol. 33 No. 1, 2001],based on the satisfaction by performance measures of partialconservation laws (PCL) (which extend the generalizedconservation laws of Bertsimas and Niño-Mora (1996)):PCL provide a polyhedral framework for establishing theoptimality of index policies with special structure inscheduling problems under admissible objectives, which weapply to the model of concern.
Resumo:
We show that if performance measures in a stochastic scheduling problem satisfy a set of so-called partial conservation laws (PCL), which extend previously studied generalized conservation laws (GCL), then the problem is solved optimally by a priority-index policy for an appropriate range of linear performance objectives, where the optimal indices are computed by a one-pass adaptive-greedy algorithm, based on Klimov's. We further apply this framework to investigate the indexability property of restless bandits introduced by Whittle, obtaining the following results: (1) we identify a class of restless bandits (PCL-indexable) which are indexable; membership in this class is tested through a single run of the adaptive-greedy algorithm, which also computes the Whittle indices when the test is positive; this provides a tractable sufficient condition for indexability; (2) we further indentify the class of GCL-indexable bandits, which includes classical bandits, having the property that they are indexable under any linear reward objective. The analysis is based on the so-called achievable region method, as the results follow fromnew linear programming formulations for the problems investigated.
Resumo:
The Network Revenue Management problem can be formulated as a stochastic dynamic programming problem (DP or the\optimal" solution V *) whose exact solution is computationally intractable. Consequently, a number of heuristics have been proposed in the literature, the most popular of which are the deterministic linear programming (DLP) model, and a simulation based method, the randomized linear programming (RLP) model. Both methods give upper bounds on the optimal solution value (DLP and PHLP respectively). These bounds are used to provide control values that can be used in practice to make accept/deny decisions for booking requests. Recently Adelman [1] and Topaloglu [18] have proposed alternate upper bounds, the affine relaxation (AR) bound and the Lagrangian relaxation (LR) bound respectively, and showed that their bounds are tighter than the DLP bound. Tight bounds are of great interest as it appears from empirical studies and practical experience that models that give tighter bounds also lead to better controls (better in the sense that they lead to more revenue). In this paper we give tightened versions of three bounds, calling themsAR (strong Affine Relaxation), sLR (strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight LP), and show relations between them. Speciffically, we show that the sPHLP bound is tighter than sLR bound and sAR bound is tighter than the LR bound. The techniques for deriving the sLR and sPHLP bounds can potentially be applied to other instances of weakly-coupled dynamic programming.
Resumo:
We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.
Resumo:
Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.
Resumo:
Two graphs with adjacency matrices $\mathbf{A}$ and $\mathbf{B}$ are isomorphic if there exists a permutation matrix $\mathbf{P}$ for which the identity $\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathbf{B}$ holds. Multiplying through by $\mathbf{P}$ and relaxing the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation known as fractional isomorphism. We show that the levels of the Sherali--Adams (SA) hierarchy of linear programming relaxations applied to fractional isomorphism interleave in power with the levels of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler--Lehman algorithm, or, equivalently, with the levels of indistinguishability in a logic with counting quantifiers and a bounded number of variables. This tight connection has quite striking consequences. For example, it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs. We also offer applications in both finite model theory and polyhedral combinatorics. First, we show that certain properties of graphs, such as that of having a flow circulation of a prescribed value, are definable in the infinitary logic with counting with a bounded number of variables. Second, we exploit a lower bound construction due to Cai, Fürer, and Immerman in the context of counting logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do not reach their integer hulls for up to $\Omega(n)$ levels, where $n$ is the number of vertices in the graph.
Resumo:
Global warming mitigation has recently become a priority worldwide. A large body of literature dealing with energy related problems has focused on reducing greenhouse gases emissions at an engineering scale. In contrast, the minimization of climate change at a wider macroeconomic level has so far received much less attention. We investigate here the issue of how to mitigate global warming by performing changes in an economy. To this end, we make use of a systematic tool that combines three methods: linear programming, environmentally extended input output models, and life cycle assessment principles. The problem of identifying key economic sectors that contribute significantly to global warming is posed in mathematical terms as a bi criteria linear program that seeks to optimize simultaneously the total economic output and the total life cycle CO2 emissions. We have applied this approach to the European Union economy, finding that significant reductions in global warming potential can be attained by regulating specific economic sectors. Our tool is intended to aid policymakers in the design of more effective public policies for achieving the environmental and economic targets sought.
Resumo:
La percepción del joven estudiante de economía es que la práctica con ejercicios es lo único que debe saber. Ésta percepción se puede cambiar con la Programación Lineal ya que unimos teoría y práctica y, al mismo tiempo, mejoramos la capacidad de modelar situaciones económicas y además, hacemos énfasis en el uso de las matemáticas como herramienta eficaz en la mejora de las actividades propias.
Resumo:
Wavelength division multiplexing (WDM) networks have been adopted as a near-future solution for the broadband Internet. In previous work we proposed a new architecture, named enhanced grooming (G+), that extends the capabilities of traditional optical routes (lightpaths). In this paper, we compare the operational expenditures incurred by routing a set of demands using lightpaths with that of lighttours. The comparison is done by solving an integer linear programming (ILP) problem based on a path formulation. Results show that, under the assumption of single-hop routing, almost 15% of the operational cost can be reduced with our architecture. In multi-hop routing the operation cost is reduced in 7.1% and at the same time the ratio of operational cost to number of optical-electro-optical conversions is reduced for our architecture. This means that ISPs could provide the same satisfaction in terms of delay to the end-user with a lower investment in the network architecture
Resumo:
In this article, a new technique for grooming low-speed traffic demands into high-speed optical routes is proposed. This enhancement allows a transparent wavelength-routing switch (WRS) to aggregate traffic en route over existing optical routes without incurring expensive optical-electrical-optical (OEO) conversions. This implies that: a) an optical route may be considered as having more than one ingress node (all inline) and, b) traffic demands can partially use optical routes to reach their destination. The proposed optical routes are named "lighttours" since the traffic originating from different sources can be forwarded together in a single optical route, i.e., as taking a "tour" over different sources towards the same destination. The possibility of creating lighttours is the consequence of a novel WRS architecture proposed in this article, named "enhanced grooming" (G+). The ability to groom more traffic in the middle of a lighttour is achieved with the support of a simple optical device named lambda-monitor (previously introduced in the RingO project). In this article, we present the new WRS architecture and its advantages. To compare the advantages of lighttours with respect to classical lightpaths, an integer linear programming (ILP) model is proposed for the well-known multilayer problem: traffic grooming, routing and wavelength assignment The ILP model may be used for several objectives. However, this article focuses on two objectives: maximizing the network throughput, and minimizing the number of optical-electro-optical conversions used. Experiments show that G+ can route all the traffic using only half of the total OEO conversions needed by classical grooming. An heuristic is also proposed, aiming at achieving near optimal results in polynomial time
Resumo:
We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism, and the computational effort grows linearly with the number of Fourier modes needed to represent the solution. For these reasons it is a very good option to compute quasi-periodic solutions with several basic frequencies. The paper includes some examples (flows) to show the efficiency of the method in a parallel computer. In these flows we compute invariant tori of dimensions up to 5, by taking suitable sections.
Resumo:
This paper shows how a high level matrix programming language may be used to perform Monte Carlo simulation, bootstrapping, estimation by maximum likelihood and GMM, and kernel regression in parallel on symmetric multiprocessor computers or clusters of workstations. The implementation of parallelization is done in a way such that an investigator may use the programs without any knowledge of parallel programming. A bootable CD that allows rapid creation of a cluster for parallel computing is introduced. Examples show that parallelization can lead to important reductions in computational time. Detailed discussion of how the Monte Carlo problem was parallelized is included as an example for learning to write parallel programs for Octave.
Resumo:
This note describes ParallelKnoppix, a bootable CD that allows creation of a Linux cluster in very little time. An experienced user can create a cluster ready to execute MPI programs in less than 10 minutes. The computers used may be heterogeneous machines, of the IA-32 architecture. When the cluster is shut down, all machines except one are in their original state, and the last can be returned to its original state by deleting a directory. The system thus provides a means of using non-dedicated computers to create a cluster. An example session is documented.