19 resultados para Semantic Publishing, Linked Data, Bibliometrics, Informetrics, Data Retrieval, Citations
Resumo:
Background: Systematic approaches for identifying proteins involved in different types of cancer are needed. Experimental techniques such as microarrays are being used to characterize cancer, but validating their results can be a laborious task. Computational approaches are used to prioritize between genes putatively involved in cancer, usually based on further analyzing experimental data. Results: We implemented a systematic method using the PIANA software that predicts cancer involvement of genes by integrating heterogeneous datasets. Specifically, we produced lists of genes likely to be involved in cancer by relying on: (i) protein-protein interactions; (ii) differential expression data; and (iii) structural and functional properties of cancer genes. The integrative approach that combines multiple sources of data obtained positive predictive values ranging from 23% (on a list of 811 genes) to 73% (on a list of 22 genes), outperforming the use of any of the data sources alone. We analyze a list of 20 cancer gene predictions, finding that most of them have been recently linked to cancer in literature. Conclusion: Our approach to identifying and prioritizing candidate cancer genes can be used to produce lists of genes likely to be involved in cancer. Our results suggest that differential expression studies yielding high numbers of candidate cancer genes can be filtered using protein interaction networks.
Resumo:
This paper explores the possibility of using data from social bookmarking services to measure the use of information by academic researchers. Social bookmarking data can be used to augment participative methods (e.g. interviews and surveys) and other, non-participative methods (e.g. citation analysis and transaction logs) to measure the use of scholarly information. We use BibSonomy, a free resource-sharing system, as a case study. Results show that published journal articles are by far the most popular type of source bookmarked, followed by conference proceedings and books. Commercial journal publisher platforms are the most popular type of information resource bookmarked, followed by websites, records in databases and digital repositories. Usage of open access information resources is low in comparison with toll access journals. In the case of open access repositories, there is a marked preference for the use of subject-based repositories over institutional repositories. The results are consistent with those observed in related studies based on surveys and citation analysis, confirming the possible use of bookmarking data in studies of information behaviour in academic settings. The main advantages of using social bookmarking data are that is an unobtrusive approach, it captures the reading habits of researchers who are not necessarily authors, and data are readily available. The main limitation is that a significant amount of human resources is required in cleaning and standardizing the data.
Resumo:
El artículo revisa los temas principales en la preservación y reuso de los datos de investigación (beneficios, ciclo de vida, proyectos, normativas ) e identifica la falta de un registro mundial de bancos, repositorios y bibliotecas de datos. Expone la creación de una herramienta web que recoja este tipo de depósitos y los clasifique por áreas disciplinares: ODiSEA International Registry on Research Data. Ofrecemos resultados sobre número y tipología temática de este tipo de depósitos a escala mundial. Esta aportación facilita el descubrimiento de nuevos conjuntos de datos cuya recombinación desde una perspectiva multidisciplinar fomentará la innovación y la rentabilidad de la inversión en ciencia.
Resumo:
Polyphenols are a major class of bioactive phytochemicals whose consumption may play a role in the prevention of a number of chronic diseases such as cardiovascular diseases, type II diabetes and cancers. Phenol-Explorer, launched in 2009, is the only freely available web-based database on the content of polyphenols in food and their in vivo metabolism and pharmacokinetics. Here we report the third release of the database (Phenol-Explorer 3.0), which adds data on the effects of food processing on polyphenol contents in foods. Data on >100 foods, covering 161 polyphenols or groups of polyphenols before and after processing, were collected from 129 peer-reviewed publications and entered into new tables linked to the existing relational design. The effect of processing on polyphenol content is expressed in the form of retention factor coefficients, or the proportion of a given polyphenol retained after processing, adjusted for change in water content. The result is the first database on the effects of food processing on polyphenol content and, following the model initially defined for Phenol-Explorer, all data may be traced back to original sources. The new update will allow polyphenol scientists to more accurately estimate polyphenol exposure from dietary surveys. Database URL: http://www.phenol-explorer.eu