29 resultados para Sedimentary sands
Resumo:
A detailed magnetostratigraphic study has been carried out in the early to middle Miocene distal alluvial and lacustrine sediments of the Montes de Castejón (central Ebro Basin). The study was based on the analysis of 196 magnetostratigraphic sites sampled along a stratigraphic interval of about 240 meters. Local magnetostratigraphy yielded a sequence of 12 magnetozones (6 normal and 6 reverse) which could be correlated with the Geomagnetic Polarity Time Scale (GPTS) interval C5Cr to C5AD (between 17 and 14.3 Ma.). The sampled sedimentary sequences include the boundary between two tectosedimentary units (TSU, T5 and T6) already defined in the Ebro Basin. The magnetostratigraphy of the Montes de Castejón allows to date the T5/T6 TSU boundary at 16.14 Ma, within chron C5Cn.1n. This magnetostratigraphy also allows us to analyse in detail as well as to discuss the variations in sedimentation rates through space and time between different lacustrine environments: Outer carbonate lacustrine fringes and distal alluvial plains (Montes de Castejón sections) show higher sedimentation rates than offshore lacustrine areas (San Caprasio section, 50 km east of Montes de Castejón).
Resumo:
In the southeastern Ebro Foreland Basin, the marine deposits of Lutetian and Bartonian age show excellent outcrop conditions, with a great lateral and horizontal continuity of lithostratigraphic units. In addition, the rich fossil record -mainly larger foraminifers-, provides biostratigraphic data of regional relevance for the whole Paleogene Pyrenean Basin, that can be used for the Middle Eocene biocorrelation of the western Tethys. This contribution is a sedimentary and biostratigraphic synthesis of the basic outcrops and sections of the Lutetian andBartonian marine and transitional deposits in the southeastern sector of the Ebro Foreland Basin.
Resumo:
The Mediterranean Sea is a relative newcomer to Earth"s landscape. Due to its complex tectonic history, this mid-latitude sea is composed of a cluster of basins. Their seascape is in most cases dominated by geologically young structures, but also by sedimentary processes. Among the latter, sedimentary processes related to the dynamics of the largest rivers in the Mediterranean (Ebro, Rhône, Po, Danube, and Nile) stand out. This overview article illustrates the main sedimentary processes and their products contributing to shape the Mediterranean seascape within a source-tosink approach. To highlight this approach, this article mainly focuses on one of the EUROSTRATAFORM project study areas: the northwestern Mediterranean.
Resumo:
High-resolution side scan sonar has been used for mapping the seafloor of the Ría de Pontevedra. Four backscatter patterns have been mapped within the Ría: (1) Pattern with isolated reflections, correlated with granite and metamorphic outcrops and located close to the coastal prominence and Ons and Onza Islands. (2) Pattern of strong reflectivity usually located around the basement outcrops and near the coastline and produced by coarse-grained sediment. (3) Pattern of weak backscatter is correlated with fine sand to mud and comprising large areas in the central and deep part of the Ría, where the bottom currents are weak. It is generally featureless, except where pockmarks and anthropogenic features are present. (4) Patches of strong and weak backscatter are located in the boundary between coarse and fine-grained sediments and they are due to the effect of strong bottom currents. The presence of megaripples associated to both patterns of strong reflectivity and sedimentary patches indicate bedload transport of sediment during high energy conditions (storms). Side scan sonar records and supplementary bathymetry, bottom samples and hydrodynamic data reveal that the distribution of seafloor sediment is strongly related to oceanographic processes and the particular morphology and topography of the Ría.
Resumo:
The stratigraphic basis of this work has allowed the use of larger foraminifers in the biostratigraphic characterisation of the new Shallow Benthic Zones (SBZ). This part of the volume presents a description of the sedimentary cycles formed by the transgressive-regressive systems of the Lutetian and Bartonian in the southeastern sector of the Ebro Foreland Basin. Concerning the Lutetian deposits studied in the Amer-Vic and Empordà areas, four sedimentary cycles have been characterised. The first and second are found within the Tavertet/Girona Limestone Formation (Reguant, 1967; Pallí, 1972), while the third and fourth cycles cover the Coll de Malla Marl Formation (Clavell et al., 1970), the Bracons Formation (Gich, 1969, 1972), the Banyoles Marl Formation (Almela and Ríos, 1943), and the Bellmunt Formation (Gich, 1969, 1972). In the Bartonian deposits studied in the Igualada area, two transgressive-regressive sedimentary cycles have been characterised in the Collbàs Formation (Ferrer, 1971), the Igualada Formation (Ferrer, 1971), and the Tossa Formation (Ferrer, 1971). The Shallow Benthic Zones (SBZs) recognised within the Lutetian are the following: SBZ 13, from the Early Lutetian, in the transgressive system of the first cycle; SBZ 14, from the Middle Lutetian, in the second cycle and the lower part of the transgressive system of the third cycle; SBZ 15, from the Middle Lutetian, in the remaining parts of the third system; SBZ 16, from the Late Lutetian, throughout the fourth cycle. The association of larger foraminifers in the first and second cycles of the Bartonian in the Igualada area has been used as the basis for the definition of SBZs 17 and 18 recognised in the Bartonian of the western Tethys.
Resumo:
Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.
Resumo:
The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.
Resumo:
Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.
Resumo:
The Powell Basin is a small oceanic basin located at the NE end of the Antarctic Peninsula developed during the Early Miocene and mostly surrounded by the continental crusts of the South Orkney Microcontinent, South Scotia Ridge and Antarctic Peninsula margins. Gravity data from the SCAN 97 cruise obtained with the R/V Hespérides and data from the Global Gravity Grid and Sea Floor Topography (GGSFT) database (Sandwell and Smith, 1997) are used to determine the 3D geometry of the crustal-mantle interface (CMI) by numerical inversion methods. Water layer contribution and sedimentary effects were eliminated from the Free Air anomaly to obtain the total anomaly. Sedimentary effects were obtained from the analysis of existing and new SCAN 97 multichannel seismic profiles (MCS). The regional anomaly was obtained after spectral and filtering processes. The smooth 3D geometry of the crustal mantle interface obtained after inversion of the regional anomaly shows an increase in the thickness of the crust towards the continental margins and a NW-SE oriented axis of symmetry coinciding with the position of an older oceanic spreading axis. This interface shows a moderate uplift towards the western part and depicts two main uplifts to the northern and eastern sectors.
Resumo:
The stratigraphic basis of this work has allowed the use of larger foraminifers in the biostratigraphic characterisation of the new Shallow Benthic Zones (SBZ). This part of the volume presents a description of the sedimentary cycles formed by the transgressive-regressive systems of the Lutetian and Bartonian in the southeastern sector of the Ebro Foreland Basin. Concerning the Lutetian deposits studied in the Amer-Vic and Empordà areas, four sedimentary cycles have been characterised. The first and second are found within the Tavertet/Girona Limestone Formation (Reguant, 1967; Pallí, 1972), while the third and fourth cycles cover the Coll de Malla Marl Formation (Clavell et al., 1970), the Bracons Formation (Gich, 1969, 1972), the Banyoles Marl Formation (Almela and Ríos, 1943), and the Bellmunt Formation (Gich, 1969, 1972). In the Bartonian deposits studied in the Igualada area, two transgressive-regressive sedimentary cycles have been characterised in the Collbàs Formation (Ferrer, 1971), the Igualada Formation (Ferrer, 1971), and the Tossa Formation (Ferrer, 1971). The Shallow Benthic Zones (SBZs) recognised within the Lutetian are the following: SBZ 13, from the Early Lutetian, in the transgressive system of the first cycle; SBZ 14, from the Middle Lutetian, in the second cycle and the lower part of the transgressive system of the third cycle; SBZ 15, from the Middle Lutetian, in the remaining parts of the third system; SBZ 16, from the Late Lutetian, throughout the fourth cycle. The association of larger foraminifers in the first and second cycles of the Bartonian in the Igualada area has been used as the basis for the definition of SBZs 17 and 18 recognised in the Bartonian of the western Tethys.
Resumo:
In the southeastern Ebro Foreland Basin, the marine deposits of Lutetian and Bartonian age show excellent outcrop conditions, with a great lateral and horizontal continuity of lithostratigraphic units. In addition, the rich fossil record -mainly larger foraminifers-, provides biostratigraphic data of regional relevance for the whole Paleogene Pyrenean Basin, that can be used for the Middle Eocene biocorrelation of the western Tethys. This contribution is a sedimentary and biostratigraphic synthesis of the basic outcrops and sections of the Lutetian andBartonian marine and transitional deposits in the southeastern sector of the Ebro Foreland Basin.
Resumo:
The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.
Resumo:
In the Catalonian Coastal Ranges, Paleozoic sedimentary and meta-sedimentary rocks crop out in severa1 areas, intruded by late tectonic Hercynian granitoids and separated by Mesozoic and Tertiary cover sediments. Large structures are often difficult to recognize, although a general east-west trend can be observed on the geological map. Deformation was accompanied by the development of cleavages and regional metamorphism. Green-schist facies rocks are prominent throughout the Ranges, while amphibolite facies are restricted to small areas. In low-grade areas, the main deformation phase generated south-facing folds with an axial plane cleavage (slaty cleavage in metapelitic rocks). The intersection lineation (Ss/Sl) and the axes of minor folds trend cast-west, as do all mapable structures. Late deformations generated coarse crenulations, small chevrons and kink-bands, all intersecting the slaty cleavage at high angles. In medium- to high-grade areas no major folds have been observed. In these areas, the main foliation is a schistosity and is often folded, giving centimetric to decimetric, nearly isoclinal intrafolial folds. In schists, these folds aremuchmore common than inother lithologies, and can be associated with a crenulation cleavage. All these planar structures in high-grade rocks are roughly parallel. The late Hercynian deformational events, which gave rise to the crenulations and small chevrons, also produced large (often kilometric) open folds which fold the slaty cleavage and schistosity. As aconsequence, alternating belts with opposite dip (north and south) of the main foliation were formed. With respect to the Hercynian orogenic belt, the Paleozoic outcrops of the Catalonian Coastal Ranges are located within the northern branch of the Ibero-Armorican arc, and have a relatively frontal position within the belt. The Carboniferous of the Priorat-Prades area, together with other outcrops in the Castellón Province, the Montalbán massif (Iberian Chain) and the Cantabrian zone (specially the Pisuerga-Carrión Province) probably form part of a wide area of foreland Carboniferous deposition placed at the core of the arc.