29 resultados para Scio de San Miguel, Felipe, bp., fl. 1795,
Resumo:
A theory is presented to explain the statistical properties of the growth of dye-laser radiation. Results are in agreement with recent experimental findings. The different roles of pump-noise intensity and correlation time are elucidated.
Resumo:
An equation for mean first-passage times of non-Markovian processes driven by colored noise is derived through an appropriate backward integro-differential equation. The equation is solved in a Bourret-like approximation. In a weak-noise bistable situation, non-Markovian effects are taken into account by an effective diffusion coefficient. In this situation, our results compare satisfactorily with other approaches and experimental data.
Resumo:
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
Resumo:
An equation for mean first-passage times of non-Markovian processes driven by colored noise is derived through an appropriate backward integro-differential equation. The equation is solved in a Bourret-like approximation. In a weak-noise bistable situation, non-Markovian effects are taken into account by an effective diffusion coefficient. In this situation, our results compare satisfactorily with other approaches and experimental data.
Resumo:
Fréedericksz transition under twist deformation in a nematic layer is discussed when the magnetic field has a random component. A dynamical model which includes the thermal fluctuations of the system is presented. The randomness of the field produces a shift of the instability point. Beyond this instability point the time constant characteristic of the approach to the stationary stable state decreases because of the field fluctuations. The opposite happens for fields smaller than the critical one. The decay time of an unstable state, calculated as a mean first-passage time, is also decreased by the field fluctuations.
Resumo:
A calculation of passage-time statistics is reported for the laser switch-on problem, under the influence of colored noise, when the net gain is continuously swept from below to above threshold. Cases of fast and slow sweeping are considered. In the weak-noise limit, asymptotic results are given for small and large correlation times of the noise. The mean first passage time increases with the correlation time of the noise. This effect is more important for fast sweeping than for slow sweeping.
Resumo:
A general dynamical model for the first-order optical Fréedericksz transition incorporating spatial transverse inhomogeneities and hydrodynamic effects is discussed in the framework of a time-dependent Ginzburg-Landau model. The motion of an interface between two coexisting states with different director orientations is considered. A uniformly translating front solution of the dynamical equations for the motion of that interface is described.
Resumo:
We analyze the dynamics of a transient pattern formation in the Fréedericksz transition corresponding to a twist geometry. We present a calculation of the time-dependent structure factor based on a dynamical model which incorporates consistently the coupling of the director field with the velocity flow and also the effect of fluctuations. The appearance and development of a characteristic periodicity is described in terms of the time dependence of the maximum of the structure factor. We find a well-defined time for the appearance of the pattern and a subsequent stage of pattern development in which the characteristic periodicity tends to an asymptotic value.
Resumo:
A nonlinear calculation of the dynamics of transient pattern formation in the Fréedericksz transition is presented. A Gaussian decoupling is used to calculate the time dependence of the structure factor. The calculation confirms the range of validity of linear calculations argued in earlier work. In addition, it describes the decay of the transient pattern.
Resumo:
We study the Fréedericksz transition in a twist geometry under the effect of a periodic modulation of the magnitude of the applied magnetic field. We find a shift of the effective instability point and a time-periodic state with anomalously large orientational fluctuations. This time-periodic state occurs below threshold and it is accompanied by a dynamically stabilized spatial pattern. Beyond the instability the emergence of a transient pattern can be significantly delayed by a fast modulation, allowing the observation of pattern selection by slowing down the reorientational dynamics.
Resumo:
We study the dynamics of the late stages of the Fréedericksz transition in which a periodic transient pattern decays to a final homogeneous state. A stability analysis of an unstable stationary pattern is presented, and equations for the evolution of the domain walls are obtained. Using results of previous theories, we analyze the effect that the specific dynamics of the problem, incorporating hydrodynamic couplings, has on the expected logarithmic domain growth law.
Resumo:
Transient dynamics of spatial fluctuations of the director field in the pure twist Fréedericksz transition is studied. A nonlinear calculation is presented. Anomalous transient fluctuations are shown. Different stages of evolution and the domain of validity of linear theories are discussed.
Resumo:
A generalized off-shell unitarity relation for the two-body scattering T matrix in a many-body medium at finite temperature is derived, through a consistent real-time perturbation expansion by means of Feynman diagrams. We comment on perturbation schemes at finite temperature in connection with an erroneous formulation of the Dyson equation in a paper recently published.
Resumo:
El hueso frontal de équido grabado con una representación de este mismo animal procedente de la Cueva de Hornos de la Peña (Cantabria), se recuperó a principios del pasado siglo XX en las excavaciones de H. Breuil, H. Obermaier y H. Alcalde del Río. A pesar de la atribución auriñaciense de sus excavadores, las diferentes publicaciones posteriores en que la pieza ha sido objeto de análisis, han mantenido siempre la duda de su pertenencia a este tecnocomplejo. A ello ha contribuido el hecho de que la estratigrafía de Hornos de la Peña no ha podido ser hasta el presente estudiada en profundidad, como también, muy probablemente, el carácter naturalista de su representación que parece alejarlo de los presupuestos artísticos del Paleolítico Superior inicial cantábrico. En este trabajo presentamos una serie de datos sobre la estratigrafía del yacimiento, obtenidos de diversos documentos inéditos conservados en el archivo del Museo Arqueológico Nacional de Madrid que, a nuestro juicio, corroboran la pertenencia de esta pieza de arte mueble al Auriñaciense.